STAMFORD UNIVERSITY BANGLADESH DEPARTMENT OF CIVIL ENGINEERING

Planning \& Design of a Residential cum Commercial Building

Md. Mehedi Hasan

ID \# CEN 059-09112

Md. Imran Hossain
ID \# CEN 059-09115

Md. Muniruzzaman

ID \# CEN 059- 09184

Planning \& Design of a Residential cum Commercial Building

A Project and Thesis

By

Md. Mehedi Hasan
ID \# CEN 059-09112

Md. Imran Hossain

ID \# CEN 059- 09115
Md. Muniruzzaman

ID \# CEN 059- 09184

Supervised
By
MD. MAHBUB-UL-ALAM

Associate Professor
Department of Civil Engineering

In partial fulfillment of the requirement for the Degree of Bachelor of Science (B.Sc.) in Civil Engineering.

STAMFORD UNIVFRSITY BANGLADESH DEPARTMENT OF CIVIL ENGINEERING

The project and thesis titled "Planning \& Design of a Residential cum Commercial Building" submitted by Md. Mehedi Hasan, ID \# CEN 059-09112; Md. Imran Hossain, ID \# CEN 059-09115 and Md. Muniruzzaman, ID \# CEN 059-09184, students of the Department of Civil Engineering has been examined thoroughly and accepted as partial fulfillment of the requirements for the degree of Bachelor of Science (B. Sc.) in Civil Engineering on $12^{\text {th }}$ September, 2020.
(Md. Mahbub-ul-Alam)

Supervisor
Project \& Thesis and
Associate Professor
Department of Civil Engineering
Stamford University Bangladesh.

DECLARATION

We, Md. Mehedi Hasan, Md. Imran Hossain and Md. Muniruzzaman, the students of Civil Engineering program hereby solemnly declare that the works presented in this project \& thesis has been carried out by us and has not previously been out submitted to any other University / College / Organization for any academic qualification / certificate degree.

We warrant that the present work does not breach any copyright.

We further undertake to indemnify the university against any loss or damage arising from breach of the foregoing obligations.

Md. Mehedi Hasan

ID \# CEN 059-09112
Batch No. 59(C).
Department of Civil Engineering

Md. Imran Hossain

ID \# CEN 059-09115
Batch No. 59(B).
Department of Civil Engineering

Munis

Md. Muniruzzaman

ID \# CEN 059-09184
Batch No. 59(C).
Department of Civil Engineering

Acknowledgement

This research works has been conducted in partial fulfillment of the requirements for the degree of Bachelor of Science (B.Sc.) in Civil Engineering. This critical works became possible for us due to the unconditional help and co-operation in different ways by many people. We express our gratefulness and thanks to them for their assistance in preparation of this project and thesis.

First of all, we like to show our highest gratitude to the Almighty Allah for His kindness on us that make it possible to complete the study and preparation of this project and thesis.

We are very much grateful to our supervisor, Md. Mahbub-ul-Alam, Associate Professor of the Department of Civil Engineering, Stamford University Bangladesh for his sincere cooperation and sufficient time for discussions and continuous suggestions.

We are indebted to Prof. Dr. B.C. Basak, the Chairman of the Department of Civil Engineering, Stamford University Bangladesh for giving us patient hearing, sufficient time for discussions and continuous suggestions and guidance for preparation of this 'Project and Thesis'. He is also our respected teacher who helped us a lot in many ways unlimitedly not only in preparation of this project and thesis but also to fulfill the requirements for earning the degree of B.Sc. in Civil Engineering.

We are also grateful to all of our teachers of the university for their co-operation and dedicated teaching for the achievement of the degree of B.Sc. in Civil Engineering. Cooperation and assistance of all the officers and staffs of the Stamford University Bangladesh are healthfully acknowledged.

Abstract

This study was carried out in the Department of Civil Engineering of Stamford University Bangladesh with the objectives of obtaining knowledge on design of Edge Supported Wall-Frame Residential.

Major cities, Specially Dhaka have been witnessing a renaissance in urban development. One of the current development patterns is a steady demand for urban projects due to continuous city migration by empty nesters and young professionals. Concerns over sprawl, traffic congestion and higher energy price will accentuate the desirability of urban living environments. This reflects a global trend taking place in major international cities due to demographic changes and rediscovery of center city living creating a need for more urban residential housing.

But what is driving this boom in high rise living? Major demographic shifts, life-style, health choices, environmental awareness, sustainability, investments in real estate and smart growth principles are contributing factors to the rise in a demand for more high-rise residential living. These issues are not only changing the way we live, but they are impacting and reinventing how we build high rise residential buildings.

High-rise residential buildings became possible with the invention of the elevator (lift) and cheaper, more abundant building materials. The materials used for the structural system of high-rise buildings are reinforced concrete and steel. High-rise structures pose particular design challenges for structural and geotechnical engineers, particularly if situated in a seismically active region or if the underlying soils have geotechnical risk factors. They also pose serious challenges to firefighters during emergencies in high-rise structures. Wind load impacts are to be carefully considered during design.

Despite the drive to meet a growing demand for housing by building faster and cheaper, a movement has begun to "raise the bar" on the quality of high-rise residential architecture from both performance and design aesthetic viewpoints. This study focuses all issues while planning and design the proposed model of the residential building.

TABLE OF CONTENTS

Page
Title
ACKNOWLEDGEMENT i
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES vii
CHAPTER 1: INTRODUCTION
1.1 General 1
1.2 Background of the Study 1
1.3 Objective of the Study 2
1.4 Scopes of the Study 3
CHAPTER 2: LETERETURE REVIEW
2.1 Edge Supported Floor Systems 4
2.2 Wall-Frame Structure 5
2.3 Seismic Design Requirements of RCC Beam 6
2.4 Seismic Considerations for Column Design 9
2.5 Shear Wall Design Considerations 13
2.6 Water Requirements as per BNBC 18
2.7 Wind Loads 19
2.8 Earthquake Loads 21
CHAPTER 3: DETAILS OF THE PROPOSED RESIDENTIAL CUM COMMERCIAL BUILDING
3.1 Introduction 29
3.2 Details of Load and Materials Properties of Proposed Building 30
3.3 Floor Plan Details of Commercial, Official \& Residential Part 33
3.4 Structural Details of Propose Building 56
Detailing of Slab 56
Detailing of Beam 57
Detailing of Column 65
Detailing of Stair 72
Detailing of Lift Core (Shear Wall) 78
Detailing of Overhead Water Tank 81
Detailing of Underground Water Reservoir 84
CHAPTER 4: CONCLUSIONS \& RECOMMANDATIONS
5.1 Conclusions 97
5.2 Recommendations 97
REFERENCES 98

LIST OF FIGURES

Figure no. Figure name Page
2.1a Two Way Edge Support Slab 4
2.1b Plan of as Edge Support Slab System 4
2.2a Arrangement of Transverse Reinforcement in RCC Beam 8
2.2b Details of Transverse Reinforcement 8
2.3 Seismic Requirement of Column 12
2.4 Shear Wall with Typical Reinforcement Arrangement 17
3.1 Site Plan of the Proposed Building 29
3.2a 3D View of the Proposed Building 34
3.2b Back Side 3D View of the Proposed Building 35
3.2c Right Side 3D View of the Proposed Building 36
3.2d Left Side 3D View of the Proposed Building 37
3.3 3D Structural View (Frame) as per ETABS 38
3.4 Plan View of Basement Floor 42
3.5 Plan View of Ground Floor 43
3.6 Plan View of $1^{\text {st }}$ to $6^{\text {th }}$ Floor 44
3.7 Plan View of $7^{\text {th }}$ Floor 45
3.8 Plan View of $8^{\text {th }}$ Floor 46
3.9 Plan View of $9^{\text {th }}$ Floor 47
3.10 Plan View of $10^{\text {th }}$ Floor 48
3.11 Plan View of $11^{\text {th }}$ Floor 49
3.12 Plan View of 12 ${ }^{\text {th }}$ Floor 50
3.13 Plan View of $13^{\text {th }}$ Floor 51
3.14 Plan View of $14^{\text {th }}$ Floor 52
3.15 Plan View of $15^{\text {th }}$ Floor 53
3.16 Plan View of $16^{\text {th }}$ Floor 54
3.17 Plan View of $17^{\text {th }}$ Floor 55
3.18a Slab Detailing of $16^{\text {th }}$ Floor 56
3.18b Slab Detailing of $16^{\text {th }}$ Floor (Partial) 57
3.19 Floor Beam Layout of $15^{\text {th }}$ Floor 58
3.20a Longitudinal Section Reinforcement of Beam 62
3.20b Cross Section at three Location of Beam 63
3.20c Details of Closed Hoop Stirrup of Beam 64
3.21 Ground Floor Column Layout 65
3.22a Details of Longitudinsl Section 70
3.22b Details of Cross Sections, Ties and Closed Hoops 71
3.23a Stair Plan 72
3.23b Stair Elevation 72
3.24a Reinforcement Details of Stair (1 ${ }^{\text {st }}$ Flight) 77
3.24b Reinforcement Details of Stair (2 $2^{\text {nd }}$ Flight). 77
3.25 Wall Layout Plan 78
3.26 Lift Core Section (At GF Level) 79
3.27 Reinforcement Arrangement of Spandrel (At GF level) 80
3.28 Overhead Water Tank Layout Plan 81
3.29 Reinforcement Details of Overhead Water Tank Wall Cross 82 Section
3.30 Slab Reinforcement Detailing OHWT (Top) 83
3.31 Slab Reinforcement Detailing OHWT (Bottom) 84
3.32 Underground Water Reservoir 86
3.33 Details of Reinforcement Arrangement of Wall of the Underground 94 Water Reservoir
3.34 Details of Section A-A of the Underground Water Reservoir 95
3.35
Details of Section B-B of the Underground Water Reservoir 95
3.36 Reinforcement Details of Bottom of the Underground Water 96 Reservoir
3.37 Reinforcement Details of Bottom of the Underground Water 96 Reservoir

LIST OF TABLES

Table no.
Table name
Page

2.1 Guideline for Water Requirement for Various Occupancies and
Facility Groups in LPCD 18
2.2 Fire Protection for Fire Requirements 19
2.3 Basic Wind Speed for Selected Locations in Bangladesh 20
2.4 Zone Coefficient, Z 23
2.5 Structure Importance Coefficient I, I' 23
2.6 Structure Important Categories 24
2.7 Response Modification Coefficient for Structure System, R 25
2.8 Site Coefficient, S for the Seismic Lateral Forces 26
3.1 Summary of the Design Consideration and Specifications of the 30 Study
3.2a Details of Longitudinal Reinforcement (Bottom) 59
3.2b Details of Longitudinal Reinforcement (Top) 59
3.3 Details of Shear Reinforcement 59
3.4 Longitudinal Reinforcement of Column 66
3.5 Transverse/Shear Reinforcement of Column 66

CHAPTER 1

INTRODUCTION

1.1 General

High-rise buildings, which are developed as a response to population growth, rapid urbanization and economic cycles, are indispensable for a metropolitan city development. This statement holds true for today; however, the relationship between cost and benefit is more complex in today's global marketplace. The political ideology of the city plays an important role in the globalization process (Newman and Tornely, 2005; Abu-Ghazalah, 2007). The current trend for constructing buildings is to build higher and higher, and developers tend to compete with one another on heights. Tenants also appreciate landmark address and politicians are conscious of the symbolic role of high-rise buildings. The international and high technology styles have accompanied nearly all new tall buildings and became landmark of our cities (McNeill and Tewdwr-Jones, 2003). Nonetheless high-rise buildings are more expensive to construct per square meter, they produce less usable space and their operation costs are more expensive than conventional office buildings. The space efficiency, as well as the shape and geometry of the high-rise building need to satisfy the value and cost of the development equation. Space efficiency, which is determined by the size of the floor slab, dimension of the structural elements and rationalized core goes along with the financial benefit.

1.2 Background of study

Constructing a commercial cum residential building requires careful thought and planning. This design can be challenging to retail developers because of space constraints and the tendency of shoppers to prefer horizontal, rather than vertical. However, the massive land values of dense urban centers and high levels of traffic sometimes make vertical designs. A commercial building consumes more energy than any residential one. Designers now build systems to integrate artificial and natural light, air-conditioning units, acoustics and natural resources to make the commercial building more efficient.

The technical classification of a commercial building for zoning purposes is that it has more than half of its floor space used for commercial activities. Such buildings are owned by various individuals and group entities who construct them or build them for profit.

Developers build commercial cum residential properties with the intent to resell for profit or to lease for income. Other investors enter after construction for similar investment purposes.

Over the history of building structures, the changes in technology have been tremendous. Part of this comes from the daily strategies of human living. In recent years, the trend is the construction of mixed-uses structures as limited natural resources, the expenses, time and stresses of commuting draw people back into the city center. As a result, urban centers include now mostly structures with a storefront next to the street, offices in the stories immediately above, and, finally in the upper levels, apartments for city dwellers. But these types of buildings are difficult to arrange to take total advantage of structural and mechanical systems. The living quarters, with their more intimate spaces, need closer column spacing, and have fewer vents and wires required meeting needs of comfort. Shallow floor-to-floor heights in the apartment areas are possible since they can be accommodated by a flat plate/flat slab design. Offices need grid or pan systems covered by drop ceilings to allow HVAC and electrical systems to be delivered to desired locations within each square.

Hence, according to the need of rentable spaces, owner desires, aesthetics, cost, safety and comfort, architects and engineers are now facing the challenges of structural design to accommodate people's total daily life in one single structure. As outcomes, multiplan and multifunctional structures are now being constructed with different types of concrete floor systems considering lateral loads impacts which is a major concern to the designers and this study reflects this scenario.

1.3 Objectives and the study

- How to allocate Multiplan Multistoried Building.
- How to allocate modern amenities \& services such as Escalator, Passenger Elevator, Observation Lift, Car Parking, Security Facilities etc. for a commercial \& residential high rise structure.
- How to prepare floor plans for different purposes such as commercial, residential etc. in one structure.
- How to design different structural elements such as beams, columns, shear wall, ramp etc. as per lateral loads requirements of BNBC \& ACI Codes.

1.4 Scopes/limitations of the study

1. This study had been made based on High rise structural design concept. Following parameters were not considered in the design of the structure:

- Deflections and sway effects
- Design of beam-column joints

2. Edge supported floor system was considered.
3. Etabs-2016 \& Safe-2014 was used for analysis, design \& detailing.
4. Stair, Underground water reservoir, Linear ramp, Septic tank etc. were designed manually.
5. Architectural Plan was done according to BNBC code.
6. Plumbing, electrification, brick works etc. were not considered.
7. Estimation \& Cost analysis of the structure were not done.

CHAPTER 2

LITERETURE REVIEW

2.1 Edge Supported Floor Systems

If the slab is supported by beams on all four sides (as shown in Figure 2.1), the loads are transferred to all four beams, assuming rebar in both directions.

Figure 2.1a: Two way edge supported slab

Figure 2.1b: Plan of an edge supported slab system

The edge supported slab system has the following advantages, disadvantages and applications:

- Advantages:
- Increased gravity and lateral load resistance
- Increased torsional resistance
- Decreased slab edge displacements
- Economical for longer spans and high loads

■ Disadvantages:

- Presence of beams may require greater storey height
- Requires a regular column layout
- Grid of downstand beams deters fast formwork recycling.
- Flexibility of partition location and horizontal service distribution may be compromised.

■ Typical Applications:

- Economical for more heavily loaded spans from 25 to 35 ft .
- Generally used for retail developments, warehouses, stores, etc.

2.2 Wall-frame structure

It is a combination from shear walls and rigid frames. In this combinations the walls tend to deflect in a flexural configuration and the frames tend to deflect in shear mode are constrained to adopt a common deflected by a horizontally rigidity of the girders and the slabs. As a consequence, the walls and the frames interact horizontally, especially at the top, to produce stiffer and stronger structure. The interacting wall -frame combination is appropriate for buildings in the 40 to 60 storey range, well beyond that of rigid frames or shear walls alone.

2.3 Seismic design requirements of RCC Beams

\# Material Strength

- Minimum specified compressive strength of all types of concrete, $f_{c}{ }^{\prime}=3,000 \mathrm{psi}$
- Maximum specified compressive strength of light-weight concrete, $f_{c}{ }^{\prime}=5,000 \mathrm{psi}$
- Maximum specified yield strength of reinforcement, $f_{y}=60,000 \mathrm{psi}$

\# Clear span of the beam

- Clear span $>$ four times the effective depth i.e. $l_{n}>4 d$

\# Sectional dimensions of the beam

- Width-to-depth ratio ≥ 0.3 i.e. $b / h \geq 0.3$
- Minimum width ≥ 10 inch
- Minimum width of the beam \leq [width of the supporting column $+1.5 h$]

\# Main reinforcement

- $\rho_{\min } \geq 200 / f_{y}$
- $\rho_{\text {max }} \leq 0.0250$
- Two continuous bars should be at both top and bottom of the member.
- At any section, the top or bottom steel should not be less than $1 / 4$ of the steel for the maximum -ve moment at the supports.
- At each support, minimum bottom +ve steel must be equal to $1 / 2$ of the -ve moment steel.

\# Splicing of the Main reinforcement

- Splice shall not be used (i) within joints (ii) within $2 h$ from the column face.
- Splices are to be confined by hoops or spiral reinforcement with maximum spacing or pitch of $d / 4$ or 4 inch whichever is smaller.

\# Transverse reinforcement details

Such reinforcement (details in Figure 2.2a) is provided in the form of a closed hoop with cross tie(s) and must satisfy the following requirements:

- Total required steel area $A_{v}=\frac{\frac{V_{u}}{\phi}}{f_{y} \times d} \times s$
- Confinement reinforcement is provided in the form of hoops, as shown in figure 2.2b.
- Hoops are required over a distance $2 h$ ($h=$ depth of beam) from faces of both supports.
- First hoop will be placed at 2 inch from face of support.
- Maximum hoop spacing is the smaller of the followings:
i) $d / 4$
ii) 8 x diameter of smallest longitudinal bar
iii) 24 x diameter of the hoop bar
iv) 12 inch
- Where hoops are not required (beyond confinement zone and splicing), stirrups with seismic hooks at both ends (detail A) shall be spaced not more than $d / 2$ throughout the length of the member.

Figure 2.2a: Arrangement of Transverse Reinforcement in RCC Beam

Figure 2.2b: Details of Transverse Reinforcement

2.4 Seismic Considerations for Column Design

Material Strength

- Minimum compressive strength of all types of concrete, $f_{c}{ }^{\prime}=3,000 \mathrm{psi}$
- Maximum compressive strength of light-weight concrete, $f_{c}{ }^{\prime}=5,000 \mathrm{psi}$
- Maximum yield strength of reinforcement, $f_{y}=60,000 \mathrm{psi}$
- Normal density concrete is preferable, $w_{c}=140 \sim 150 p c f$

Sectional dimensions of the column

- Width-to-depth ratio ≥ 0.4 i.e. $b / h \geq 0.4$
- Least dimension ≥ 12 inch

Main reinforcement ratio

- $\rho_{\text {min }}=0.01$
- $\rho_{\text {max }}=0.06$
- Preferable $\rho=0.04$

Splicing of the Main reinforcement

- Lap splice shall be used only within the center of the column.
- Welded splices may be used at any section of column, provided that:
a) They are used only alternate longitudinal bars at a section
b) The distance between splices along the longitudinal axis of reinforcement ≥ 24 "
- Splices are to be confined by hoops or spiral reinforcement with maximum spacing or pitch of $d / 4$ or 4 inch whichever is smaller.
- Splice length:

Splice length = $1.3 l_{d}$ (class B splice)
Where, $l_{d}=$ development length of the bars

$$
I_{d} \geq\left\{\begin{array}{l}
\frac{0.04 \mathrm{~A}_{\mathrm{b}} \mathrm{f}_{\mathrm{y}}}{\sqrt{\mathrm{f}_{\mathrm{c}}^{\prime}}}, \mathrm{A}_{\mathrm{b}}=\text { Bar area } \\
0.0004 \mathrm{~d}_{\mathrm{b}} \mathrm{f}_{\mathrm{y}} \\
12^{\prime \prime}
\end{array}\right\}
$$

Transverse reinforcement

Such reinforcement is provided as closed hoops for tied column or circular hoops for spiral column.
a) Circular hoops: steel ratio of circular/spiral hoops,

$$
\rho_{\mathrm{s}} \geq\left\{\begin{array}{l}
0.12 \frac{f_{c}^{\prime}}{f_{y h}} \\
0.45\left(\frac{A_{g}}{A_{c h}}-1\right) \frac{f_{c}^{\prime}}{f_{y h}}
\end{array}\right\}
$$

Where,
$f_{y h}=$ yield strength of hoop reinforcement.
$A_{c h}=$ core area of column section measured to the outside of hoop reinforcement.
b) Closed hoops: Total cross-sectional area of closed hoops,

$$
A_{s h} \geq\left\{\begin{array}{l}
0.09 s_{o} h_{c} \frac{f_{c}^{\prime}}{f_{y h}^{\prime}} \\
0.3 s_{o} h_{c}\left(\frac{A_{g}}{A_{c h}}-1\right) \frac{f_{c}^{\prime}}{f_{y h}}
\end{array}\right\}
$$

Where,
$h_{c}=$ cross-sectional dimension of column core measured center-to-center of hoop reinforcement.
$s_{o}=$ vertical spacing of hoop reinforcement.

- Confinement length: confinement reinforcement is to be provided over a length l_{o} from each joint face.

$$
I_{o} \geq\left\{\begin{array}{l}
\frac{1}{6}(\text { clearspan of the column }) \\
\text { depth of member } \\
18^{\prime \prime}
\end{array}\right\}
$$

First hoop will be placed at 2 inch from the joint.

- Spacing of the hoops:

$$
s_{o} \leq\left\{\begin{array}{l}
\frac{1}{4}(\text { least member dim ension }) \\
6 d_{b} \\
s_{x}=4+\frac{14-h_{x}}{3} ; 4^{\prime} \leq s_{x} \leq 6^{\prime \prime}
\end{array}\right\}
$$

Consecutive crossties engaging the same longitudinal bar have their 90-deg hooks on opposite sides of column

Where,
$h_{x}=$ maximum horizontal spacing of hoop or crosstie legs on all faces of the column ≤ 14 ".

- Special Notes:
a) If column support shear wall, confinement reinforcement is to be provided over the full height of the column.
b) If column terminates on a footing, confinement reinforcement shall extend at least 12 " into the footing.
c) Beyond the length l_{o} and splice length, the maximum spacing of tie or pitch of spiral will be,

$$
s \leq\left\{\begin{array}{c}
6 d_{b} \\
6^{\prime \prime}
\end{array}\right\}
$$

A detail of seismic requirements for column is shown in Figure 2.3.

Figure 2.3: Seismic Requirements of Column

2.5 Shear wall design considerations

A shear wall may be subjected to the following forces. The typical design procedure of a shear wall is presented here as per ACI code.

Step-1: Calculate External Load

$$
M_{u}
$$

V_{u} » These can be obtained by software analysis.
P_{u}

Step-2: Boundary element check

$$
\begin{aligned}
& I_{g}=\frac{b h^{3}}{12}=\frac{b_{w} l_{w}^{3}}{12} \\
& f_{c}=\frac{P}{A} \pm \frac{M C}{I_{g}}
\end{aligned}
$$

If $f_{c}<0.2 f_{c}^{\prime}$, then boundary element will not be required.
If $f_{c} \geq 0.2 f_{c}^{\prime}$, then boundary element will be required.

Step-3: Obtain the dimension of the shear wall

Length of the shear wall $=l_{w}$
Width of the shear wall $=b_{w}$
Height of the shear wall $=h_{w}$

Step-4: Determine the dimension of the boundary element

As per following figure, calculate:
Thickness of the boundary element= b_{b}
Length of the boundary element $=l_{b}$

Also remember the following conditions:

- The minimum section dimension of the boundary zone shall be $l_{\mathrm{w}} / 16$ i.e. $b_{b} \geq l_{\mathrm{w}} / 16$ and $l_{b} \geq l_{w} / 16$.
- Boundary zones shall have a minimum length of 18 inches (measured along the length) at each end of the wall i.e. $l_{b} \geq 18$ ".

Step-5: Check requirement of longitudinal \& transverse reinforcements

According to the ACI code, two sets of reinforcement curtains, each having bars running in the longitudinal and transverse directions, will be required

- If $\frac{A_{c v} \times \sqrt{f^{\prime}}{ }_{c}}{6}<V_{u}$, where $A_{c v}=l_{w} b_{w}$
- If thickness of the wall > 10".

Step-6: Calculate the longitudinal \& transverse reinforcements

Steel ratios:

*if $V_{u}>\frac{A_{c v} \sqrt{f_{c}^{\prime}}}{6}$,

$$
\rho_{v}=0.0025 \& \rho_{h}=0.0025
$$

*if $V_{u} \leq \frac{A_{c v} \sqrt{f_{c}^{\prime}}}{6}$,
for $\mathrm{bar} \leq \phi 16$:

$$
\rho_{v}=0.0012 \quad \& \quad \rho_{h}=0.0020
$$

for bar $>\phi 16$:

$$
\rho_{v}=0.0015 \quad \& \quad \rho_{h}=0.0025
$$

Total steel areas:

Total longitudinal reinforcement per feet of wall, $A_{s v}=\rho_{v} \times 12 \times b_{w}$
Total transverse reinforcement per feet of wall, $A_{s h}=\rho_{h} \times 12 \times b_{w}$

Spacing:

Required spacing of bars having areas A_{b} per feet of wall [in two curtains, $A_{v}=2 A_{b}$]:
$S=\frac{A_{v} \times 12}{A_{s}}$

Maximum spacing:

$S_{\text {max }}$ will be smaller of the followings:

$$
\begin{aligned}
& S_{\max }=3 h=3 b_{w} \\
& S_{\max }=\frac{l_{w}}{5} \\
& S_{\max }=18^{\prime \prime}
\end{aligned}
$$

Step-7: Check shear strength of concrete of wall to prevent V_{u}

- For walls with a height-to-width ratio $h_{w} / l_{w} \geq 2.0$, the shear strength of concrete is to be determined using the expression:

$$
\phi V_{n}=\phi A_{c v}\left(2 \sqrt{f_{c}^{\prime}}+\rho_{n} f_{y}\right)
$$

Where,
$\varphi=0.60$, unless the nominal shear strength provided exceeds the shear corresponding to development of nominal flexural capacity of the wall.
$A_{c v}=$ net area $=l_{w} b_{w}$
$h_{w}=$ height of entire wall or of segment of wall considered
$l_{\mathrm{w}}=$ width of wall (or segment of wall) in direction of shear force
$\rho_{n}=$ reinforcement ratio in per foot of wall corresponding to plane perpendicular to plane of $A_{c v}$
$=\frac{2 x \text { area of the selected horizontal bar }}{b_{w} \times 12}$

- For walls with $h_{w} / l_{w}<2.0$, the shear strength of concrete may be determined from

$$
\phi V_{n}=\phi A_{c v}\left(\alpha_{c} \sqrt{f_{c}^{\prime}}+\rho_{n} f_{y}\right)
$$

Where the coefficient α_{c} varies linearly from a value of 3.0 for $h_{w} / l_{w}=1.5$ to 2.0 for h_{w} / l_{w} $=2.0$.

Where the ratio $h_{w} / l_{w}<2.0, \rho_{v}$ cannot be less than ρ_{h}.

Step-8: Reinforcement for boundary elements

Determine $\frac{M_{u}}{A_{g} \times l_{w}}$ and $\frac{P_{u}}{A_{g}}$
From interaction diagrams, corresponding $\frac{P_{u}}{A_{g}}$ and $\frac{M_{u}}{A_{g} \times l_{w}}$ value, reinforcement ratio ρ can be obtained.

Total reinforcement required for the shear wall, $A_{s}=\rho A_{g}$
Therefore, reinforcement required for boundary element
= Total steel requirement - vertical reinforcement required for non-boundary elements
$A_{s b}=A_{s}-A_{s v}$
For each boundary element, use $A_{v}=\frac{A_{s b}}{2}$

Minimum A_{v} should be larger of the followings:
$A_{v}>\left\{\begin{array}{l}0.005 x \text { area of the boundary zone } \\ 2 \# 5 \text { bars at eachedge of the boundary zone }\end{array}\right.$

Step-9: Design of Transverse reinforcement for boundary elements

Spacing, S_{0} :

Transverse reinforcement spacing will be the smaller of the followings:
First condition
$S_{o}=\frac{\text { min imum dim ension of wall }}{4}$
Second condition
$S_{o}=6 d_{b}$

Third condition
$S_{x}=\frac{14-h_{x}}{3}+4 ; 4 " \leq S_{x} \leq 6 "$.

Maximum spacing will be smaller of the followings:

$$
S_{\max }=\left\{\begin{array}{l}
6^{\prime \prime} \\
6 x d i a \text { of } l \text { arg est vertical bar }
\end{array}\right.
$$

Total steel area $A_{\text {sh }}$:

Total transverse reinforcement in long or short direction will be larger of the followings:

$$
\begin{aligned}
& A_{s h}>0.09 \times S_{o} \times h_{c} \times \frac{f_{c}{ }^{\prime}}{f_{y h}} \\
& A_{s h}>0.30 \times S_{o} \times h_{c} \times\left(\frac{A_{g}}{A_{c h}}-1\right) \times \frac{f_{c}^{\prime}}{f_{y h}}
\end{aligned}
$$

Where,
$h_{c}=$ cross-sectional dimension of boundary element core measured center-to-center of hoop reinforcement.
$S_{o}=$ vertical spacing of hoop reinforcement.
$f_{y h}=$ yield strength of hoop reinforcement.
$A_{c h}=$ core area of boundary element section measured to the outside of hoop reinforcement.
$A_{g}=$ gross area of boundary element section.

Typical reinforcement arrangement in a shear wall is shown in Figure 2.4

Figure 2.4: Shear Wall with Typical Reinforcement Arrangement

2.6 Water Requirements as per BNBC

Water Requirement for Domestic Use

Water requirements for daily domestic use of a building shall be assessed on the basis of the one or a combination of the following two methods:
a) Number of occupants according to their occupancy classification and their water requirements as specified in Table 2.1.
b) Peak demand or maximum probable flow.

Table 2.1: Guideline for Water Requirements for Various Occupancies and Facility- Groups in Litres Per Capita Per Day (LPCD)

Class of Occupancy	Occupancy Groups	For Full ${ }^{\text {a }}$ Facilities (LPCD)	For Restricted Facilities (LPCD)
Occupancy A: Residential	A1: Single Family Dwelling	400	135
	A2: Flats or Apartments	225	135
	A3: Mess, Hostels, or Boarding House	135	70
	A4: Minimum Standard Housing		70
	A5: Hotels or Lodging House (Per bed)	300	135
Occupancy B:	B1: Educational Facilities	70	45
Educational	B2: Preschool Facilities	50	35
Occupancy C: Institutional	C1: Institution for Children's Care	180	100
	C2: Custodian Institution for Capable	180	100
	C3: Custodian Institution for Incapable	120	70
	C4: Penal and Mental Institution	120	70
Occupancy D:	D1: Normal Medical Facilities	450	225
Health Care	D2: Emergency Medical Facilities	300	135
Occupancy E: Assembly	E1: Large Assembly with Fixed Seats (per seat)	90	45
	E2: Small Assembly with Fixed Seats (per seat)	90	45
	E3: Large Assembly without Fixed Seats ${ }^{\text {b }}$	8	5
	E4: Small Assembly without Fixed Seats	8	5
	E5: Sports Facilities	8	5
Occupancy F: Business and Mercantile	F1: Offices	45	30
	F2: Small Shops and Markets	45	30
	F3: Large Shops and Markets	45	30
	F4: Garage and Petrol Stations	70	45
	F5: Essential Services	70	45
Occupancy G: Industrial	G1: Low Hazard Industries	40	25
	G2: Moderate Hazards Industries	40	25
Occupancy H: Storage	H1: Low Fire Risk Storage	10	6
	H2: Moderate Fire Risk Storage	10	6
Occupancy J: Hazardous	11: Explosive Hazard Building	8	5
	J2: Chemical Hazard Building	8	5
Occupancy ${ }^{\text {K }}$ Miscellaneous	K1: Private Garage \& Special Structure	8	5
	K2: Fences, Tanks and Towers	-	3

a For full facility in occupancy classifications A, B, C and D, the water requirement value includes 25% hot water.
b In the case of mosques, the water requirements given above shall be adequate for ablution and other uses of one devotee per prayer. The appropriate LPCD value may be calculated on this basis.
c Water requirement for occupancy K is shown as a provision for unknown visitors only.

Water Requirement for Fire Fighting

The water requirement for firefighting shall be in accordance with Table 2.2.

Table 2.2: Fire Protection Flow Requirements

Building Type	$\begin{gathered} \text { Sprinkler System } \\ \text { (l/min.)* } \end{gathered}$	Standpipe and hose System (l/min.)*	$\begin{gathered} \text { Duration** } \\ \text { (minute, min.) } \end{gathered}$
Light hazard- I	1000	1000	30
Light hazard- II	1900	1900	50
Ordinary hazard- I	2650	1900	75
Ordinary hazard - II	3200	1900	75
Ordinary hazard - III	4800	1900	75
Notes:			
* Values will be for one riser serving floor area of $1000 \mathrm{~m}^{2}$.			
These durations shall be for a building up to the height of 51m. For greater height of 51-102m and above 102 m , the duration will be 1.25 times and 1.5 times of the specified values respectively.			
Light hazard - I : Occupancy groups, A1, A2, A4			
Light hazard - II : Occupancy groups, A3, A6, A7, A8, B, C, D, E2, E4, E7, F1 \& F			
Ordinary hazard - I : Occupancy groups, E1, E3, E5, F3, F4, F5, F6, F7, G1 \& G4			
Ordinary hazard- II : Occupancy groups, G2			
Ordinary hazard- III :	cupancy groups, G3		

2.7 Wind Loads

a. Basic Wind Speed

The basic wind speed for the design is taken from basic wind speed map of Bangladesh (BNBC, 1993), where it is in km / h for any location in Bangladesh, having isobaths representing the fastest-mile wind speed at 10 meters above the ground with terrain exposure B for a 50 years' recurrence interval. The minimum value of the basic wind speed set in the map is $130 \mathrm{~km} / \mathrm{h}$ and maximum is $260 \mathrm{~km} / \mathrm{h}$. The basic wind speed for selected locations in Bangladesh are given in Table 2.3

Table 2.3: Basic Wind Speeds for Selected Locations in Bangladesh

Location	Basic Wind Speed (km/h)	Location	Basic Wind Speed (km/h)
Angarpota	150	Lalmonirhat	204
Bagerhat	252	Madaripur	220
Bandarban	200	Magura	208
Barguna	260	Manikganj	185
Barisal	256	Meherpur	185
Bhola	225	Maheskhali	260
Bogra	198	Moulvibazar	168
Brahmanbaria	180	Munshiganj	184
Chandpur	160	Mymensingh	217
Chapai		Naogaon	175
Nawabganj	130	Narail	222
Chittagong	260	Narayanganj	195
Chuadanga	198	Narsinghdi	190
Comilla	196	Natore	198
Cox's Bazar	260	Netrokona	210
Dahagram	150	Nilphamari	140
Dhaka	210	Noakhali	184
Dinajpur	130	Pabna	202
Faridpur	202	Panchagarh	130
Feni	205	Patuakhali	260
Gaibandha	210	Pirojpur	260
Gazipur	215	Rajbari	188
Gopalganj	242	Rajshahi	155
Habiganj	172	Rangamati	180
Hatiya	260	Rangpur	209
Ishurdi	225	Satkhira	183
Joypurhat	180	Shariatpur	198
Jamalpur	180	Sherpur	200
Jessore	205	Sirajganj	160
Jhalakati	260	Srimangal	160
Jhenaidah	208	St. Martin’s Island	260
Khagrachhari	180	Sunamganj	195
Khulna	238	Sylhet	195
Kutubdia	260	Sandwip	260
Kishoreganj	207	Tangail	160
Kurigram	210	Teknaf	260
Kushtia	215	Thakurgaon	130
Lakshmipur	162		

b. Exposure Category

Exposure A: Urban and sub-urban areas, industrial areas, wooded areas, hilly or other terrain covering at least 20 percent of the area with obstructions of 6 meters or more in height and extending from the site at least 500 meters or 10 times the height of the structure, whichever is greater.

Exposure B: Open terrain with scattered obstruction having heights generally less than 10 m extending 800 m or more from the site in any full quadrant. This category includes airfields, open park land, sparely built up out skirts of towns, flat open country and grass land.

Exposure C: Flat and unobstructed open terrain, coastal areas and riversides facing large bodies of water, over 1.5 km or more in width. Exposure C extends inland from the shoreline 400 m or 10 times the height of structure, whichever greater.

2.8 Earthquake Load

Structural System for EQ

a) Bearing Wall System: A structural system having bearing walls or bracing systems without a complete vertical load carrying frame to support gravity loads. Resistance to lateral loads is provided by shear walls or braced frames.
b) Building Frame System: A structural system with an essentially complete space frame providing support for gravity loads. Resistance to lateral loads is provided by shear walls or braced frames separately.
c) Moment Resisting Frame System: A structural system with an essentially complete space frame providing support for gravity loads. Moment resisting frames also provide resistance to lateral load primarily by flexural action of members, and may be classified as one of the following types:
i) Special Moment Resisting Frames (SMRF)
ii) Intermediate Moment Resisting Frames (IMRF)
iii) Ordinary Moment Resisting Frames (OMRF).

The framing system, IMRF and SMRF shall have special detailing to provide ductile behavior for concrete and steel structures respectively. OMRF need not conform to the ductility requirements.
d) Dual System: A structural system having a combination of the following framing systems :
i) Moment resisting frames (SMRF, IMRF or steel OMRF), and ii) Shear walls.

The moment resisting frames shall be capable of resisting at least 25% of the applicable total seismic lateral force, even when wind or any other lateral force governs the design.

Selection of Lateral Force Method

Seismic lateral forces on primary framing systems shall be determined by using either the Equivalent Static Force Method or the Dynamic Response Method complying with the restrictions given below :
a) The Equivalent Static Force Method may be used for the following structures:
i) All structures, regular or irregular, in Seismic Zone 1 and in Structure Importance Category IV in Seismic Zone 2, except case b(iv) below.
ii) Regular structures under 75 metres in height with lateral force resistance provided by structural systems except case b(iv) below.
iii) Irregular structures not more than 20 metres in height.
iv) A tower like building or structure having a flexible upper portion supported on a rigid lower portion where:

1) both portions of the structure considered separately can be classified as regular structures,
2) the average storey stiffness of the lower portion is at least ten times the average storey stiffness of the upper portion, and
3) the period of the entire structure is not greater than 1.1 times the period of the upper portion considered as a separate structure fixed at the base.
b) The Dynamic Response Method may be used for all classes of structure, but shall be used for structures of the following types:
i) Structures 75 metres or more in height except as permitted by case a(i) above.
ii) Structures having a stiffness, weight or geometric vertical irregularity of Type I, II, or III or structures having irregular features.
iii) Structures over 20 metres in height in Seismic Zone 3 not having the same structural system throughout their height.
iv) Structures, regular or irregular, located on Soil Profile Type S4, which have a period greater than 0.7 second.

Equivalent Static Force Method

This method may be used for calculation of seismic lateral forces for all structures.
Design Base Shear: The total design base shear in a given direction shall be determined from the following relation :

$$
V=\frac{Z I C}{R} W
$$

where,

$$
Z=\text { Seismic zone coefficient }
$$

$I=$ Structure importance coefficient.
$R=$ Response modification coefficient for structural systems.
$W=$ The total seismic dead load
$C \quad=$ Numerical coefficient given by the relation:

$$
=\frac{1.25 S}{T^{2 / 3}}
$$

$S \quad=$ Site coefficient for soil characteristics.
$T=$ Fundamental period of vibration in seconds, of the structure for the direction under consideration.

Table 2.4:
Seismic Zone Coefficients, Z

Seismic Zone	Zone Coefficient
1	0.075
2	0.150
3	0.250

Table 2.5:
Structure Importance Coefficients $\boldsymbol{I}, I^{\prime}$

Structure Importance Category	Structure Importance Coefficient		
		I	I^{\prime}
I	Essential facilities	1.25	1.50
II	Hazardous facilities	1.25	1.50
III	Special occupancy	1.00	1.00
structures			
IV	Standard occupancy	1.00	1.00
structures			
V	Low-risk Structures	1.00	1.00

The value of C need not exceed 2.75 and this value may be used for any structure without regard to soil type or structure period. Except for those requirements where Code prescribed forces are scaled up by $0.375 R$, the minimum value of the ratio C / R shall be 0.075 .

Definition of different facilities as mentioned in Table 2.5 is summarized in Table 2.6.

Structure Period: For all buildings the value of T may be approximated by the following formula:

$$
\text { where, } \begin{aligned}
& T=C_{t}\left(h_{n}\right)^{3 / 4} \\
= & 0.083 \text { for steel moment resisting frames } \\
= & 0.073 \text { for reinforced concrete moment resisting frames, and } \\
& \text { eccentric braced steel frames } \\
= & 0.049 \text { for all other structural systems } \\
h_{n}= & \text { Height in metres above the base to level } n .
\end{aligned}
$$

Table 2.6: Structure Importance Categories

S	Occupancy Type or Functions of Structure	
Category	General	Particular
I	Essential Facilities	1. Hospital and other medical facilities having surgery and emergency treatment area. 2. Fire and police stations. 3. Tanks or other structures containing, housing or supporting water or other fire-suppression materials or equipment required for the protection of essential or hazardous facilities, or special occupancy structures. 4. Emergency vehicle shelters and garages. 5. Structures and equipment in emergency-preparedness centres, including cyclone and flood shelters. 6. Standby power-generating equipment for essential facilities. 7. Structures and equipment in government communication centres and other facilities required for emergency response.
II	Hazardous Facilities	Structures housing, supporting or containing sufficient quanti-ties of toxic or explosive substances to be dangerous to the safety of the general public if released.
III	Special Occupancy Structures	1. Covered structures whose primary occupancy is public assembly with capacity >300 persons. 2. Buildings for schools through secondary or day-care centre with capacity > 250 students. 3. Buildings for colleges or adult education schools with capacity > 500 students. 4. Medical facilities with 50 or more resident incapacitated patients not included above. 5. Jails and detention facilities. 6. All structures with occupancy $>5,000$ persons. 7. Structures and equipment in power-generating stations and other public utility facilities not included above, and required for continued operation.
IV	Standard Occupancy Structures	All structures having occupancies or functions not listed above.

	Low Risk Structures	Buildings and Structures that exhibit a low risk to human life and property in the event of failure, such as agricultural buildings, minor storage facilities, temporary facilities, construction facilities, and boundary walls.

Table 2.7: Response Modification Coefficient for Structural Systems, \boldsymbol{R}

\begin{tabular}{|c|c|c|}
\hline Basic Structural System \({ }^{(1)}\) \& Description of Lateral Force Resisting System \& R \\
\hline a. Bearing Wall System \& \begin{tabular}{l}
1. Light framed walls with shear panels \\
i) Plywood walls for structures, 3 storeys or less \\
ii) All other light framed walls \\
2. Shear walls \\
i) Concrete \\
ii) Masonry \\
3. Light steel framed bearing walls with tension only bracing \\
4. Braced frames where bracing carries gravity loads \\
i) Steel \\
ii) Concrete \({ }^{(2)}\) \\
iii) Heavy timber
\end{tabular} \& 8
6
6
6
6
4
6
4
4 \\
\hline b. Building Frame System \& \begin{tabular}{l}
1. Steel eccentric braced frame (EBF) \\
2. Light framed walls with shear panels \\
i) Plywood walls for structures 3-storeys or less \\
ii) All other light framed walls \\
3. Shear walls \\
i) Concrete \\
ii) Masonry \\
4. Concentric braced frames (CBF) \\
i) Steel \\
ii) Concrete (2) \\
iii) Heavy timber
\end{tabular} \& 10
9
7

8
8

8
8
8

\hline c. Moment Resisting Frame System \& | 1. Special moment resisting frames (SMRF) |
| :--- |
| i) Steel |
| ii) Concrete |
| 2. Intermediate moment resisting frames (IMRF), concrete |
| 3. Ordinary moment resisting frames (OMRF) |
| i) Steel |
| ii) Concrete (4) | \& 12

12
8

6
5

\hline d. Dual System \& | 1. Shear walls |
| :--- |
| i) Concrete with steel or concrete SMRF |
| ii) Concrete with steel OMRF |
| iii) Concrete with concrete IMRF (3) |
| iv) Masonry with steel or concrete SMRF |
| v) Masonry with steel OMRF |
| vi) Masonry with concrete IMRF (2) |
| 2. Steel EBF |
| i) With steel SMRF |
| ii) With steel OMRF |
| 3. Concentric braced frame (CBF) |
| i) Steel with steel SMRF |
| ii) Steel with steel OMRF |
| iii) Concrete with concrete SMRF (2) |
| iv) Concrete with concrete IMRF (2) | \& 12

6
9
8
6
7

12
6

10
6

9
6

\hline
\end{tabular}

Notes: (1) Basic Structural Systems.
(2) Prohibited in Seismic Zone 3.
(3) Prohibited in Seismic Zone 3
(4) Prohibited in Seismic Zones 2 and 3.

Table 2.8: Site Coefficient, \boldsymbol{S} for Seismic Lateral Forces

	Site Soil Characteristics	$\begin{gathered} \hline \text { Coefficient, } \\ S \end{gathered}$
Type	Description	
S1	A soil profile with either : a) A rock-like material characterized by a shear-wave velocity greater than $762 \mathrm{~m} / \mathrm{s}$ or by other suitable means of b) classification, or Stiff or dense soil condition where the soil depth is less than 61 metres	1.0
S2	A soil profile with dense or stiff soil conditions, where the soil depth exceeds 61 metres	1.2
S3	A soil profile 21 metres or more in depth and containing more than 6 metres of soft to medium stiff clay but not more than 12 metres of soft clay	1.5
S4	A soil profile containing more than 12 metres of soft clay characterized by a shear wave velocity less than $152 \mathrm{~m} / \mathrm{s}$	2.0
Note: (1) The site coefficient shall be established from properly substantiated geotechnical data. In locations where the soil properties are not known in sufficient detail to determine the soil profile type, soil profile S3 shall be used. Soil profile S_{4} need not be assumed unless the building official determines that soil profile S_{4} may be present at the site, or in the event that soil profile S_{4} is established by geotechnical data.		

Vertical Distribution of Lateral Forces: In the absence of a more rigorous procedure, the total lateral force, which is the base shear V, shall be distributed along the height of the structure:

$$
V=F_{t}+\sum_{i=1}^{n} F_{i}
$$

where, $F_{i}=$ Lateral force applied at storey level -i and
$F_{t}=$ Concentrated lateral force considered at the top of the building in addition to the force F_{n}.

The concentrated force, F_{t} acting at the top of the building shall be determined as follows:

$$
\begin{array}{ll}
F_{t}=0.07 T V \leq 0.25 \mathrm{~V} & \text { when } T>0.7 \text { second } \\
F_{t}=0.0 & \text { when } T \leq 0.7 \text { second }
\end{array}
$$

The remaining portion of the base shear $\left(V-F_{t}\right)$, shall be distributed over the height of the building, including level-n, according to the relation:

$$
F_{x}=\frac{\left(V-F_{t}\right) w_{x} h_{x}}{\sum_{i=1}^{n} w_{i} h_{i}}
$$

At each storey level- x, the force F_{X} shall be applied over the area of the building in proportion to the mass distribution at that level.

Any combination of Building Frame Systems, Dual Systems, or Moment Resisting Frame Systems may be used to resist design seismic forces in structures less than 50 m in height. Only combinations of Dual Systems and Special Moment Resisting Frames (SMRF) can be used to resist the design seismic forces in structures exceeding 50 m in height in Seismic Zone 3.

Drift of the Storey

Storey drift is the displacement of one level relative to the level above or below due to the design lateral forces. Calculated storey drift shall include both translational and torsional deflections and conform to the following requirements:
a) Storey drift, Δ, shall be limited as follows:
i) $\Delta \leq 0.04 h / R \leq 0.005 h \quad$ for $T<0.7$ second.
ii) $\Delta \leq 0.03 \mathrm{~h} / \mathrm{R} \leq 0.004 \mathrm{~h}$ for $T \geq 0.7$ second.
iii) $\Delta \leq 0.0025 h \quad$ for unreinforced masonry structures.
where, h = height of the building or structure.

The period T used in this calculation shall be the same as that used for determining the base shear. The limits involving R in (i) and (ii) above shall be applicable only when earthquake forces are present.
b) The drift limits set out in (a) above may be exceeded where it can be demonstrated that greater drift can be tolerated by both structural and nonstructural elements without affecting life safety.

EQ Magnitude

According to the depth of focus, tectonic earthquake is classified as:
Shallow: depth of focus is "less than 60 km .
Intermediate: depth of focus between 60 to 70 km.
Deep: depth of focus above 70 km .

Scale: The scale of earthquake intensities was conveniently classified into 12 categories, till 1935, when C.F. Richter devised a scale indicating numerical J5; magnitude of the intensity of earthquake, 10 is the highest on this scale. The greater the number more is the damaging power.

There are three zones namely zone 1 , being most active, zone II, less active and zone III, being the minimum possible intensity of earthquake. Seismic probable magnitudes are:

Zone	(Richter scale)
I	>7.0
II	$6.5-7.0$
III	$6.0-6.5$

The design of buildings against earthquake should obviously be done in Zone I. However, for low height buildings additional provision of 33\% Reinforcement may be provided. For high rise buildings proper technical Design should be done by qualified Civil Engineers.

CHAPTER 3

DETAILS OF THE PROPOSED RESIDENTIAL CUM COMMERCIAL BUILDING

3.1 Introduction

This chapter gives completed the planning, modelling, analysis, design and detailing of the structural parts of Residential cum Commercial Building.

Figure 3.1: Site plan of the Proposed Building
This Chapter has been systemically arranged in the following manner:

- Article 3.2 presents details of Loads and Material Properties of proposed building.
> 3.2.1 Load Calculation for Official \& Commercial Building
> 3.2.2 Load Calculation for Residential Building
- Article 3.3 presents Floor Plan details of proposed building.
> 3.3.1 Basement floor
> 3.3.2 Ground floor
$>$ 3.3.3 $1^{\text {st }}$ to $6^{\text {th }}$ floors
$>$ 3.3.4 $7^{\text {th }}$ floor
$>$ 3.3.5 $8^{\text {th }}$ floor
$>3.3 .69^{\text {th }}$ floor
$>3.3 .710^{\text {th }}$ floor
$>3.3 .811^{\text {th }}$ floor
$>3.3 .912^{\text {th }}$ floor
$>$ 3.3.10 $13^{\text {th }}$ floor
$>$ 3.3.11 $14^{\text {th }}$ floor
$>$ 3.3.12 $15^{\text {th }}$ floor
$>$ 3.3.13 $16^{\text {th }}$ floor
$>$ 3.3.14 $17^{\text {th }}$ floor
$>$ Roof top
- Article 3.4 present Structural details of proposed Building.
$>$ 3.4.1 Detailing of Slab.
> 3.4.2 Detailing of Beam.
> 3.4.3 Detailing of Column
$>$ 3.4.4 Detailing of Stair.
$>$ 3.4.5 Detailing of Shear Wall.
3.4.6 Detailing of Overhead Water Tank.
> 3.4.7 Detailing of Underground Water Reservoir.

3.2 Details of Loads and Material Properties of Proposed Building

The whole study was carried out based on few considerations and specifications which are Summarized in Table 3.1 below.

Table 3.1: Summary of the design considerations and specification of the study

Items	Description
Design code	- American Concrete Institute (ACI) Building design code, 2014. - Bangladesh National Building Code (BNBC), 1993.
Building components	- Column type = Tied - Footing type = Piling - Thickness of all partition walls $=5$ inch. - \quad Thickness of Slab (Two way) $=6.0$ inch. - \quad Thickness of Slab (One way) $=9.0$ inch. - Thickness of Slab (Ramp) = 19 inch.

	- Yield strength of reinforcing bars, $f_{y}=60,000 ~ p s i$.
Material	- Concrete compressive strength, $f_{c}{ }^{\prime}=4,000 \mathrm{psi}$
properties	- Normal density concrete, unit weight $=150 \mathrm{pcf}$.
	- Unit weight of brick $=120$ pcf.
	- Unit weight of water $=62.5$ pcf.

3.2.1 Load Calculation for Official \& Commercial Building:

(a) Dead loads:

Self-weight of two way slab $=(6 / 12)$ X $150=75 \mathrm{psf}$.
Self-weight of one way slab $=(9 / 12)$ X $150=112.5$ psf.
Self-weight of Ramp slab $=(19 / 12)$ X $150=237.5$ psf.
Floor finish = 30 psf .
$5^{\prime \prime}$ Partition wall Load calculation (commercial) $=21 p s f$.
(b) Other dead loads:

Floor finish for $\left(1^{\text {st }}-11^{\text {th }}\right)=30 \mathrm{psf}$.
Floor finish for parking floor space $=15 \mathrm{psf}$.
Floor finish for water tank $=10 \mathrm{psf}$.
Floor finish for stair $=25 p s f$.
(c) Live loads:

Live load for stair (commercial) $=150 p s f$.
Live load for water tank slab $\quad=10 \mathrm{psf}$.
Water pressure for water tank $\quad=437.5 \mathrm{psf}$.
Live load for floor (commercial) =150 psf.

3.2.2 Load Calculation for Residential Building:

(a) Dead loads:

Self-weight of two way slab $=(6 / 12) \mathrm{X} 150=75 \mathrm{psf}$.
Self-weight of one way slab $=(9 / 12)$ X $150=112.5$ psf.
Self-weight of Ramp slab $=(14 / 12) \mathrm{X} 150=175 p s f$.
Floor finish $=30 \mathrm{psf}$.
5" Partition wall Load calculation (residential) = 49 psf.
(b) Other dead loads:

Floor finish for $\left(1^{\text {st }}-\right.$ roof top $) \quad=30 \mathrm{psf}$.
Floor finish for parking floor space $=15 p s f$.
Floor finish for water tank $\quad=10 \mathrm{psf}$.
Floor finish for stair $=25$ psf.
(c) Live loads:

Live load for stair (residential) $=100 p s f$.
Live load for water tank slab $=10 \mathrm{psf}$.
Water pressure for water tank $\quad=437.5 \mathrm{psf}$.
Live load for floor (residential) $=40 \mathrm{psf}$.

- Seismic load:
\(\left.\begin{array}{lll}Height of building \& =205 \mathrm{ft}=62.5 \mathrm{~m}

Seismic zone Coefficient (Dhaka zone) \& =0.15\end{array}\right]\)| | |
| :--- | :--- |
| Resapons modification coefficient, R [Dual System, | Shear wall (IMRF)] |$=9.00$

- Wind load:

Length of building	$=158 \mathrm{ft} .1 \mathrm{inch}$.
Width of building	$=130 \mathrm{ft} .5 \mathrm{inch}$
Exposure Condition	$=\mathrm{B}$
Wind Pressure in Dhaka city, Vb_{b}	$=131 \mathrm{mph}$
Importance Coefficient, I	$=1.00$
Story range	$=$ Ground Floor to Parapet.

Wind load and Earthquake load were auto-calculated by ETABS-2017 according to UBC94 which is most acquainted with BNBC-93 code.

3.3 Floor Plan details of Commercial, Official \& Residential part.

Building details

- Height of building
- Length of building
- Width of building
- Total floors
- Types of floors

$$
\begin{aligned}
& =205 f t=62.5 \mathrm{~m} \\
& =158 \mathrm{ft} .1 \text { inch. } \\
& =130 \mathrm{ft} .5 \text { inch. } \\
& =18 \text { Nos. } \\
& =\text { Basement as Car parking } \\
& =\text { GF to } 6^{\text {th }} \text { floor as market (Commercial part) } \\
& =7^{\text {th }} \text { to } 8^{\text {th }} \text { floor as restaurant } \& \text { Cineplex (Commercial) } \\
& =9^{\text {th }} \text { to } 11^{\text {th }} \text { floor as (Official part) } \\
& =12^{\text {th }} \text { to } 18^{\text {th }} \text { floor as (Residential part) }
\end{aligned}
$$

The 3D view from SKETCHUP and structural model view from ETABS of the whole structures are shown in Figures 3.2 and 3.3.

Figure 3.2a: 3D view of the proposed building

Figure 3.2b: Back side 3D View of the Proposed Building

Figure 3.2c: Right side 3D View of the Proposed Building

Figure 3.2d: Left side 3D View of the Proposed Building

Figure 3.3: 3D Structural View (frame) as per ETABS

3.3.1 Basement

- 7’ bellow from road level and connected with other floors by four Stair \& six passengers' lift and also connected with road by two ramp.
- Floor area $=20628.14 \mathrm{ft}^{2}$.
- Floor height $=12^{\prime}-0$ ".
- This floor has one generator room (15'-6"X6’-7"), one toilet ($6^{\prime}-7^{\prime \prime} \mathrm{X} 5^{\prime}-0$ "'), one driving waiting room (17’-10"X8’-0"), one guard room ($7^{\prime}-0{ }^{\prime \prime}$ X8’-0"), one family flat for guard (380 ft²), it also contain 48 car and 32 motor cycle.

* 3.3.2 Ground Floor (Commercial)

- 5' above from road level and connected with $1^{\text {st }}$ to $7^{\text {th }}$ floors by four stair \& six passenger lift.
- Floor area $=20628.14 f t^{2}$.
- Floor height $=10^{\prime}-0$ ".
- This floor has 51 shops, which 76 sft has 2 shops, and the others shops are about 115 sft , $125 \mathrm{stt}, 155 \mathrm{sft}, 165 \mathrm{sft}, 175 \mathrm{sft}, 185 \mathrm{sft}$, 195 sft and 300 sft respectively 6 shops, 6 shops, 9 shops, 8 shops, 2 shops, 6 shops, 10 shops and 2 shops.

3.3.3 $\quad 1^{\text {st }}$ to $6^{\text {th }}$ Floor (Commercial)

- Floor area $=20628.14{f t^{2}}^{2}$
- Floor height =10'-0".
- This floor has 59 shops, which have 2 shops in 76 sft, and the others shops are about 115sft, 125stt, 155sft, 165sft, 175sft, 185sft, 195sft, 205sft, 235sft and 300 sft respectively 6 shops, 6 shops, 9 shops, 8 shops, 2 shops, 8 shops, 10 shops, 2 shops, 4 shops and 2 shops.

3.3.4 $7^{\text {th }}$ Floor (Commercial)

- Floor area $=20628.14 \mathrm{ft}^{2}$.
- Floor height =10'-0".
- This floor has 4 Restaurants, A Cineplex, A ticket counter, A Shop and a Washroom facility. Which have 4 Restaurants 2100sft, 1080sft, 916sft and 965 sft respectively. Cineplex is 3024 sft , tickets counter is 400sft, 280sft shop \& 318sft spaces for Washroom facilities.

* 3.3.5 $\quad 8^{\text {th }}$ Floor (Commercial)

- Floor area $=20628.14 \mathrm{ft}^{2}$.
- Floor height $=10^{\prime}-0$ ".
- A 2150sft Mosque, A shop of 360 sft, a machine room of 924 sft , $2^{\text {nd }}$ floor of Cineplex is 2940sft, a shop of1320sft \& 318sft spaces for Washroom facilities.

3.3.6 $\mathbf{9}^{\text {th }}$ Floor (Commercial)

- Floor area $=12423{f t^{2}}^{2}$.
- Floor height =10'-0".
- There are 3 office spaces which are 2882sft, 2124sft \& 4392sft.

3.3.7 10 $^{\text {th }}$ Floor (Commercial)

- Floor area $=11890 \mathrm{ft}^{2}$.
- Floor height =10'-0".
- There are 3 office spaces which are 2882sft, 2124sft \& 3460sft.

3.3.8 11 $^{\text {th }}$ Floor (Commercial)

- Floor area $=11243 \mathrm{ft}^{2}$.
- Floor height $=10^{\prime}-0$ ".
- There are 3 office spaces which are 2882sft, 2124sft \& 2997sft.

3.3.9 \quad 12 $^{\text {th }}$ Floor (Residential)

- Floor area $=11016.5 \mathrm{ft}^{2}$.
- Floor height $=10^{\prime}-0$ "
- There are 5 units, which are 2 units of 2071sft, 1 unit of 2091sft, 1 unit of 1640 sft , and 1 unit of 1420 sft .

* 3.3.10 $\quad 13{ }^{\text {th }}$ Floor (Residential)

- Floor area $=10287.5 \mathrm{ft}^{2}$.
- Floor height =10'-0"
- There are 5 units, which are 2071sft, 2071sft, 2091sft, 1527sft and 1375sft respectively.

* 3.3.11 $14^{\text {th }}$ Floor (Residential)

- Floor area $=9801 \mathrm{ft}^{2}$.
- Floor height =10'-0"
- There are 5 units, which are 2071sft, 2071sft, 2091sft, 1460sft and 1297sft respectively.

3.3.12 15 $^{\text {th }}$ Floor (Residential)

- Floor area $=9497 \mathrm{ft}^{2}$.
- Floor height =10'-0"
- There are 5 units, which are 2071sft, 2071sft, 2091sft, 1335sft and 1217sft respectively.

3.3.13 $\mathbf{1 6}^{\text {th }}$ Floor (Residential)

- Floor area $=9376 \mathrm{ft}^{2}$.
- Floor height =10'-0"
- There are 4 units, which are 2071sft, 2071sft, 2091sft, 2156sft respectively.

* 3.3.14 17 $^{\text {th }}$ Floor (Residential)

- Floor area $=9376 \mathrm{ft}^{2}$.
- Floor height =10'-0"
- There are 4 units, which are 2071sft, 2071sft, 2091sft, 2120sft respectively.

Details of Basement Floor, $1^{\text {st }}$ to $17^{\text {th }}$ Floors and Roof top are shown in Figures 3.4~3.17.

Figure 3.4: Plan view of Basement Floor.

Figure 3.5: Plan view of Ground Floor.

Figure 3.6: Plan view of $1^{\text {st }}$ to $6^{\text {th }}$ Floor.

Figure 3.7: Plan view of $7^{\text {th }}$ Floor.

Figure 3.8: Plan view of $8^{\text {th }}$ Floor.

Figure 3.9: Plan view of $9^{\text {th }}$ Floor (12423 ${f t^{2}}^{2}$).

Figure 3.10: Plan view of $10^{\text {th }}$ Floor (11890 ft^{2}).

Figure 3.11: Plan view of $11^{\text {th }}$ Floor (11243 ft ${ }^{2}$).

Figure 3.12: Plan view of $12^{\text {th }}$ Floor (11016.5 ft^{2}).

Figure 3.13: Plan view of $13^{\text {th }}$ Floor (10287.5 ft^{2}).

Figure 3.14: Plan view of $14^{\text {th }}$ Floor (9801 ft^{2}).

Figure 3.15: Plan view of $15^{\text {th }}$ Floor (9497 $f t^{2}$)

Figure 3.16: Plan view of $16^{\text {th }}$ Floor (9376 ft^{2}).

Figure 3.17: Plan view of $17^{\text {th }}$ Floor (9376 ft^{2}).

3.4 Structural details of propose Building

This part includes the portions of results of analysis, design and detailing of Slab, Beam, Column, Stair, Lift core, Water tank etc.

3.4.1 Detailing of Slab

All slab panels are analyzed, designed and detailed by ETABS and SAP software. Detailing of different slab panels shown in Figure 3.18.

Figure 3.18a: Slab detailing of 16th Floor

Figure 3.18b: Slab detailing of 16th Floor (Partial)

3.4.2 Detailing of Beam

This gives details of floor beam design for lateral loadings. There are several floor beams in this structure. All beams are analyzed by ETABS software. For space limitations, design of grid 8, frame D-E of $15^{\text {th }}$ floor is presented here.

Figure 3.19: Floor beam layout of 15th floor

1. Dimension of the beam:

Assume the Size of Beam $=\mathrm{b} \times \mathrm{h}=14^{\prime \prime} \times 20^{\prime \prime}$

2. Longitudinal reinforcement of beam:

Moment, Shear and Steel area of the Beam and details from ETABS analysis are given below by table.

Table 3.2a: Details of Longitudinal Reinforcement (Bottom)

Beam Portion		End - I	Middle	End - J
	Moment, Mu	+47.66 K-ft	+42.27 K-ft	+65.67 K-ft
	As (Required)	$0.82 \mathrm{in}^{2}$	$0.71 \mathrm{in}^{2}$	$0.85 \mathrm{in}^{2}$
		Use $2 \phi 20 \mathrm{~mm}$ Bar	Use $2 \phi 20 \mathrm{~mm}$ Bar	Use 2 220 mm Bar
	As (Provided)	$0.88 \mathrm{in}^{2}$	$0.88 \mathrm{in}^{2}$	$0.88 \mathrm{in}^{2}$

Table 3.2b: Details of Longitudinal Reinforcement (Top)

Beam Portion		End - I	Middle	End - J
$\stackrel{\text { Q }}{\hat{6}}$	Moment, Mu	-106.21 K-ft	-28.38 K-ft	-114.97 K-ft
	As (Required)	$1.41 \mathrm{in}^{2}$	$0.47 \mathrm{in}^{2}$	$1.50 \mathrm{in}^{2}$
		Use $2 \phi 20 \mathrm{~mm}$ Bar +2中16mm Bar	Use 2 \$20mm Bar	Use $2 \phi 20 \mathrm{~mm}$ Bar +2ф16mm Bar
	As (Provided)	$1.50 \mathrm{in}^{2}$	$0.88 \mathrm{in}^{2}$	$1.50 \mathrm{in}^{2}$

3. Transverse/Shear Reinforcement:

There will be 3 types of reinforcement for share.
Table 3.3: Details of Shear Reinforcement

Beam Portion	End - I	Middle	End - J
Shear Force, Vu	8.07 Kip	1.1 Kip	26.97 Kip
Shear Steel	$0.14 \mathrm{in}^{2} / \mathrm{ft}$	$0 \mathrm{in}^{2} / \mathrm{ft}$	$0.15 \mathrm{in}^{2} / \mathrm{ft}$

(a) Seismic Stirrup:

Use $\phi 16 \mathrm{~mm}$ as Seismic Stirrups.

- Spacing
$S_{\max }=\frac{d}{4}=\frac{17.5}{4}=4.375 \equiv 4.25 \mathrm{c} \mathrm{c} / \mathrm{c}$
$S_{\text {max }}=8 \times$ minimum dia. of main bar $=8 \times 0.75=6^{\prime \prime}{ }^{\prime} / \mathrm{c}$
$S_{\text {max }}=24 \times$ hoops bar dia. $=24 \times \frac{5}{8}=15 \mathrm{\prime c} / \mathrm{c}$
$\therefore S_{\text {max }}=4.25 \mathrm{c} / \mathrm{c}$ is selected.
A closed hoop with seismic hook will be provided. The first one is placed 2" from each face of column. The others are placed @ $4.25^{\prime \prime} /$ / within $2 h=2 \times 20=40^{\prime \prime}$ from both faces of column.

Here, $\frac{A_{v}}{s}=0.15$
$\mathrm{A}_{\mathrm{v}}=0.15 \times 4.25$

$$
=0.64 \mathrm{in}^{2}
$$

For 2-leg 16 mm stirrup and $A_{v}=0.31 \times 2=0.62$ in 2
So cross tie is required.
So, $\mathrm{A}_{\mathrm{v}}=0.64-0.62=0.02 \mathrm{in}^{2}$ (negligible)
So, No cross tie required.
(b) Splicing Stirrups:

* Splice Length

For top bars, class A and for bottom bars, class B lap splices will be provided.
Total splice length for top bars $\quad=l_{d}$
Total splice length for bottom bars $=1.3 l_{d}$
Here,

- For $\phi 20 \mathrm{~mm}$ bar
$l_{d} \geq \frac{0.04 \times A_{b} \times f y}{\sqrt{f_{c}^{\prime}}}=\frac{0.04 \times 0.44 \times 60000}{\sqrt{4000}}=16.70^{\prime \prime}$
$l_{d} \geq 0.0003 d_{b} f_{y}=0.0003 \times 0.75 \times 60000=13.5^{\prime \prime}$
$l_{d}=12^{\prime \prime}$
Selected, $l_{d}=16.70^{\prime \prime}$
Splice length for $\phi 20 \mathrm{~mm}$ (bottom) bars $=1.3 \times 16.70^{\prime \prime}=21.71^{\prime \prime}=22^{\prime \prime}$
Splice length for $\phi 20$ (top) bars $=17^{\prime \prime}$

* Splice Location

(i) Lap splices of the bars should not be placed within the beam-column joint and within a distance $2 h=2 \times 20=40$ " from both support faces.
(ii) Lap splices of bottom bars should be made immediately beyond the $2 h$ distance.
(iii) Lap splices of top bars should be placed at or near mid span.

* Spacing

Total splice length of top \& bottom bars should be confined by close hoops with seismic hooks.

Spacing, $S=d / 4=17.5 / 4=4.375^{\prime \prime} \equiv 4.25^{\prime \prime} \mathrm{c} / \mathrm{c}$
or $S=4.0^{\prime \prime} \mathrm{c} / \mathrm{c}$
So, provide $\phi 16 \mathrm{~mm}$ closed hoops with seismic hook @ 4.0" c/c along the total splice length.

(c) Regular Stirrups:

Except confinement zone \& lap splices length for top \& bottom bars, the regular stirrup $\phi 16 \mathrm{~mm}$ will be provided spacing $@ \frac{d}{2}=\frac{17.5}{2}=8.75^{\prime \prime} \equiv 8.5^{\prime \prime} \mathrm{c} / \mathrm{c}$

Selected spacing $8.5^{\prime \prime} \mathrm{c} / \mathrm{c}$ for regular stirrup.
Other beams of the frame were designed as per similar procedure Details of reinforcement arrangement is shown in Figure 3.20.

Figure 3.20a: Longitudinal Section Reinforcement of Beam

Cross section of Beam (A-A)
With Seismic stirrup.

Cross section of Beam (B-B)
With Regular stirrup.

Cross section of Beam (C-C)
With lapping stirrup.

Figure 3.20b: Cross Section at three locations of Beam

Figure 3.20c: Details of Closed Hoop Stirrup of Beam.

3.4.3 Detailing of Column

This presents the detailed design of reinforced columns there are several columns in this building. All columns are analyzed by ETABS software. For space limitations, design of grid J-4 (C-28x30) of GROUND floor is presented here.

Figure 3.21: Ground Floor column layout

1. Dimension of the column:

Assume the Size of column $=\mathrm{b} \times \mathrm{h}=28^{\prime \prime} \times 30^{\prime \prime}$

2. Longitudinal reinforcement of column:

Moment, Shear, Axial Force and Steel area of the Column and details from ETABS, given below by Table 3.4.

Table 3.4: Longitudinal reinforcement of column (C-28x30) GRID J-4

	Top	Bottom
Axial Force, Pu	787.95 Kip	777.95 Kip
Moment, Mu	$+999.94 \mathrm{k}-\mathrm{ft}$	$-676.52 \mathrm{k}-\mathrm{ft}$
As (Required)	$33.85 \mathrm{in}^{2}$	$27.05 \mathrm{in}^{2}$
Required Bar	Use $22 \phi 35 \mathrm{mmBar}$	Use $22 \phi 35 \mathrm{mmBar}$
As (Provided)	$34.32 \mathrm{in}^{2}$	$34.32 \mathrm{in}^{2}$

3. Transverse reinforcement of column:

There are three types of ties.
Table 3.5: Transverse/Shear Reinforcement of Column

	Top	Bottom
Shear Force, Vu	8.35 Kip	8.35 Kip
$\boldsymbol{A v} / \boldsymbol{S}$ (Required)	$0.30 \mathrm{in}^{2}$	$0.30 \mathrm{in}^{2}$

(a) Seismic Tie

We use closed hoops with seismic hook. It is provided at a specified distance near both joints. Use $\phi 12 \mathrm{~mm}$ tie.

* Spacing of the seismic tie:

First Condition-
$\mathrm{S}_{\mathrm{o}}=\frac{\text { minimum dimension of Column }}{4}=\frac{28}{4}=7 \prime$
Second Condition-
$\mathrm{S}_{\mathrm{o}}=6 \mathrm{~d} \mathrm{~b}=6 \times \frac{11}{8}=8.25^{\prime \prime}$
Third Condition-
So $=4 "$
From above condition, the minimum spacing $\mathrm{S}_{\mathrm{o}}=4.0^{\prime \prime} \mathrm{c} / \mathrm{c}$

* Transverse reinforcement:

Total transverse steel areas $\boldsymbol{A}_{\text {sh }}$

Short direction

$h_{c}=30 "-2 *\left[1.5+\frac{4}{2 x 8}\right]=26.50^{\prime \prime}$
$A_{c h}=(30-2 * 1.5) \times(28-2 * 1.5)=675 \mathrm{in}^{2}$

Total Transverse reinforcement will be larger of the followings:
$A_{s h}>0.09 \times S \times h_{c} \times \frac{f_{c}^{\prime}}{f_{y h}}=0.09 * 7 * 26.5 * \frac{4}{60}=1.113$ in 2 (governs)
Or $A_{s h}>0.30 \times S \times h_{c} \times\left(\frac{A_{g}}{A_{c h}}-1\right) \times \frac{f_{c^{\prime}}}{f_{y h}}=0.30 \times 7 \times 26.5 \times\left(\frac{30 * 28}{675}-1\right) \times \frac{4}{60}$
$=0.91 \mathrm{in}^{2}$
Use $2 \phi 12 \mathrm{~mm}$ [1 outside closed hoop] \& $4 \phi 12 \mathrm{~mm}$ cross ties
Provided areas $=2 \mathrm{x} 0.20+4 \mathrm{x} 0.20=1.20 \mathrm{in}^{2}>1.113 \mathrm{in}^{2}$.

Long direction

$h_{c}=28^{\prime \prime}-2 *\left[1.5+\frac{4}{2 x 8}\right]=24.50 "$
$A_{c h}=(30-2 * 1.5) \times(28-2 * 1.5)=675 \mathrm{in}^{2}$

Total Transverse reinforcement will be larger of the followings:
$A_{s h}>0.09 \times S \times h_{c} \times \frac{f_{c}^{\prime}}{f_{y h}}=0.09 * 7 * 24.5 * \frac{4}{60}=1.03 \mathrm{in}^{2}$ (governs)
Or $A_{s h}>0.30 \times S \times h_{c} \times\left(\frac{A_{g}}{A_{c h}}-1\right) \times \frac{f_{c^{\prime}}}{f_{y h}}=0.30 \times 7 \times 24.5 \times\left(\frac{30 * 28}{675}-1\right) \times \frac{4}{60}$

$$
=0.838 \mathrm{in}^{2}
$$

Use $2 \phi 12 \mathrm{~mm}$ [1 outside closed hoop] \& $4 \phi 12 \mathrm{~mm}$ cross ties
Provided areas $=2 \mathrm{x} 0.20+4 \times 0.20=1.20 \mathrm{in}^{2}>1.03$ in 2.

* Confinement length for transverse steel:

First condition-
$l_{o}=$ Depth of Column = 30"
Second Condition-
$I_{o}=\frac{\text { Clear span of column }}{6}=\frac{12-\frac{30}{12}}{6} \times 12=19 "$
Third Condition
$l_{o}=18 "$
Provided confinement length from both center of joints, $l_{o}=30^{\prime \prime}=2.5^{\prime}$
Total confinement length $=2 l_{o}=2 \times 2.5^{\prime}=5^{\prime}$

(b) Splice Tie

It is a closed hoop with seismic hook provided for splicing length of longitudinal bars. Generally lapping of bars is done at or near mid height of column.

* Splicing length-

Splicing length must be 1.3 times of development length for $\phi 35 \mathrm{~mm}$ main bar which is calculated as below.

First condition
$l_{d}=0.04 \times A_{b} \times \frac{f y}{\sqrt{\text { f } \mathrm{c}}}=0.04 \times 1.56 \times \frac{60000}{\sqrt{4000}}=59.20 "$

Second condition-
$l_{d}=0.0004 \times d_{b} \times f_{y}=0.0004 \times \frac{11}{8} \times 60000=33^{\prime \prime}$

Third condition-
$l_{d}=$ minimum 12"
From above condition, selected $l_{d}=59.20 "$
Provided splicing length $=1.30 \times 59.20 "=76.96 "=6.4^{\prime}$.

* Spacing of tie

According to the ACI code the whole splicing zone should be confined by closed hoops with seismic hooks having the spacing calculated as below:

First condition-
$\mathrm{S}_{\text {max }}=\frac{d}{4}=\frac{30-1.5-0.5-\frac{1.375}{2}}{4}=6.83 " \cong 6.75^{\prime \prime}$
Second condition-
$\mathrm{S}_{\text {max }}=$ minimum 4 " c / c
So, use $\phi 12 \mathrm{~mm}$ splicing ties @ 4" c / c

(c) Regular Tie

Provided closed hoops having the spacing calculated as below:
First condition-
$S_{\text {max }}=6 d_{b}=6 \times 1.56=9.36 \equiv 9.25^{\prime \prime} \mathrm{c} / \mathrm{c}$
Second condition-
$S_{\text {max }}=6 " c / c$
So, use $\phi 12 \mathrm{~mm}$ regular ties @ 6 " c c

Other columns of the frame were designed as per similar procedure. The reinforcement detail of the column is shown in the Figures 3.22.

Figure 3.22a: Details of Longitudinal Section

Figure 3.22b: Details of Cross Sections, Ties and Closed Hoops

3.4.4 Detailing of Stair

There is one stair starts from ground floor and ends at roof top. The plan view of the Stair is shown in Figure 3.23.

Figure 3.23a: Stair Plan

Figure 3.23b: Stair Elevation

Design Data:

Stair size	$=19^{\prime}-1^{\prime \prime} \times 10^{\prime}-9 "$
Assume all beam width	$=16.0^{\prime \prime}$
Story height	$=10^{\prime}$
Height of each flight	$=5^{\prime}$
Width of each flight	$=5^{\prime}-0^{\prime \prime}$
Tread (T)	$=12^{\prime \prime}$
Rise (R)	$=6^{\prime \prime}$
No. of Rise	$=\frac{\text { Ht. of flight }}{\text { ht. of rise }}=\frac{5^{*} 12}{6}=10$ nos.
No. of tread	$=$ No. of Rise $-1=10-1=9$ nos

Analysis and Design of Stairs presented below:
Effective span length = 19'-1'
Assume, waist slab thickness $=6 "$
Effective depth, $d=6-1=5 "$
Here,
$\mathrm{W}_{\text {waist }}=\mathrm{R} * \operatorname{Cos} \theta$
$\mathbf{R}=\frac{W_{\text {waist }}}{\cos \theta}=\frac{\frac{\text { Thickness of waist slab }}{12} * \text { unit wt of conc. }}{\cos \theta}$

I) Load calculation:

- Self-weight of waist slab $=\frac{6}{12} * 150 * \frac{1}{\cos \theta} \quad\left[\cos \theta=\frac{\mathbf{9 . 1 6 7}}{\sqrt{\mathbf{5}^{\mathbf{2}+9.167^{2}}}}=0.878\right.$ $=\frac{6}{12} \times 150 \times \frac{1}{0.878} \quad=85.82 \mathrm{lb} / f t$
- Self-weight of steps

$$
=\frac{\frac{1}{2} \times \frac{12}{12} \times \frac{6}{12} \times 10.44 \times 150}{9}=43.51 \mathrm{lb} / \mathrm{ft}
$$

- Floor finish
$=25.0 \mathrm{lb} / f t$
- Live load
$=100 \mathrm{lb} / \mathrm{ft}$

Total unfactored dead load $=85.82+43.51+25$
$=154.33 \mathrm{lb} / \mathrm{ft}$
Total unfactored live load
$=100 \mathrm{lb} / \mathrm{ft}$
Total factored load, $W_{t}=1.2 \times 154.33+1.6 \times 100$
$=345.196 \mathrm{lb} / \mathrm{ft}$

II) Moment Calculation\& d Check:

-ve moment at both supports $=\frac{1}{9} W_{T} l_{n} \quad 2=\frac{345.196 \times 19.167^{2}}{9}=14090.67 \mathrm{lb}-\mathrm{ft}=14.09 \mathrm{k}-\mathrm{ft}$ + ve moment at mid span $\quad=\frac{1}{9} W_{T} l_{n} \quad 2=\frac{345.196 \times 19.167^{2}}{9}=14090.67 \mathrm{lb}-\mathrm{ft}=14.09 \mathrm{k} \mathrm{ft}$

Effective depth will be checked for maximum moment which is $14.09 k$ - ft.
$\rho_{b}=0.85 \beta_{1} \frac{f f^{\prime} c}{f_{y}} \times \frac{87000}{87000+f_{y}}=0.85 \times 0.85 \times \frac{4000}{60000} \times \frac{87000}{87000+60000}=0.028506$
$\rho_{\text {max }}=0.75 \rho_{b}=0.75 \times 0.028506=0.021380$

$$
\begin{aligned}
& M_{u}=\phi \rho b d^{2} f_{y}\left(1-0.59 \rho \frac{f_{y}}{f_{c}^{\prime}}\right) \\
& =>14.09 * 12=0.90 \times 0.021380 \times 12 \times d^{2} \times 60 \times\left(1-0.59 \times 0.021380 \times \frac{60}{4}\right)
\end{aligned}
$$

So, $d=3.88 "<5^{\prime \prime}$ ok.

III) $\boldsymbol{A}_{\boldsymbol{s}}$ calculation:

Main Steel:

+ Ve steel for mid span
$M_{u}=14.09 k-f t \quad \mathrm{~b}=1 f t$ strip of waist slab $=12^{\prime \prime}$
Selected bar is $\emptyset 12 \mathrm{~mm}$ and $A_{b}=0.20 \mathrm{in}^{2}$
- Minimum steel requirement for 60 -grade bar, $A_{s t}=0.0018 b h=0.0018 \times 12 \times 6=0.13 \mathrm{in}^{2} / f t$
- Total required reinforcement,

$$
\begin{aligned}
\text { Asreq }=\rho b d & =\frac{0.85 f_{c}^{\prime}}{f_{y}}\left[1-\sqrt{1-\frac{2 M_{u}}{0.85 \varphi f_{c}{ }_{c} b d^{2}}}\right] b d \\
& =\frac{0.85 \times 4}{60}\left[1-\sqrt{1-\frac{2 \times 14.09}{0.85 \times 0.90 \times 4 \times 12 \times 5^{2}}}\right] 12 \times 5=0.698 \mathrm{in}^{2} / \mathrm{ft}>0.13 \mathrm{in}^{2} / \mathrm{ft}
\end{aligned}
$$

So provided steel area, $A_{s}=0.698 \mathrm{in}^{2} / f t$.

- Maximum spacing, $\mathrm{S}_{\max }=$ Smaller of 3 h or $18^{\prime \prime}=$ Smaller of $3 \times 6^{\prime \prime}$ or $18^{\prime \prime}=18$
- Spacing $=\frac{A b \times 12}{A s}=\frac{0.20 * 12}{0.698}=3.44 \mathrm{c} / \mathrm{c}=3 . .25 \mathrm{c} \mathrm{c} / \mathrm{c}$

Use Ø12mm bar @ 3.25" c/c,

-Ve steel for both supports

Moment for mid span and both supports are same as $\mathbf{1 4 . 0 9} \mathbf{k}$ - ft . Reinforcement requirement and spacing of the main bars at both supports will also be same as mid span which is Ø12mm bar @ 3.25" c/c.

So, use 1012 mm extra top in between two bars in order to maintain the spacing 3.25 " at those locations.

Temperature \& Shrinkage Steel:

For 60-grade bar, $A_{s t}=0.0018 b h=0.0018 \times 12 \times 6=0.13 \mathrm{in}^{2} / f t$
Use Ø10mm bar, area is $0.11 \mathrm{in}^{2}$
Spacing $=\frac{0.11 * 12}{0.13}=10.15 "=10 \mathrm{c} / \mathrm{c}$
Use Ø10mm bar @10" c/c above the main bars at mid span and below at both supports in opposite direction of the main bars.

Reinforcement details of stair is given Figure 3.24.

Figure 3.24(a): Reinforcement Details of Stair ($1^{\text {st }}$ Flight)

Figure 3.24(b): Reinforcement Details of Stair (${ }^{\text {nd }}$ Flight)

Detailing of Lift Core (Shear Wall)

This gives details of lift core design for lateral loadings. There is one lift core in this building. Lift core was analyzed, designed and detailed by ETABS 2017 Software. Allocation of lift core, detailing of lift core of ground floor level and roof level is presented in Figures 3.25 ~ 3.27.

Figure 3.25: Wall Layout Plan

Figure 3.26: Lift Core Section (At GF Floor Level)

Figure 3.27: Reinforcement arrangement of Spandrel (At GF Floor Level)

Detailing of Overhead Water Tank

There are three overhead water tanks constructed. For space limitations, design of OWT, which located within grid 1-2, frame B-C is presented here.

No of OHWT	$=2$
Length	$=19^{\prime}-7^{\prime \prime}$
Width	$=19^{\prime}-1^{\prime \prime}$
Tank height	$=5.5^{\prime}$
Free board	$=0.5^{\prime}$
Total tank height	$=5.5+0.5=6^{\prime}$
Select tank size	$=19^{\prime}-77^{\prime \prime} \times 19^{\prime}-1^{\prime \prime} \times 6^{\prime}$

Over Head Water Tank are analyzed, designed and detailed by ETABS and SAP software. The layout of OWT are shown in Figure 4.29. Details of reinforcement arrangement of OWT are shown in Figures 3.28-3.31.

Figure 3.28: Overhead Water Tank Layout Plan

Figure 3.29: Reinforcement details of Over Head Water Tank wall cross section.

Figure 3.30: Slab detailing OHWT (Top)

Figure 3.31: Slab detailing OWT (Bottom)

Detailing of Underground Water Reservoir

There are two underground water reservoirs (35 ' x 20'each) below basement floor surrounded by mat for fulfilling the water demand of the Building. Water storage is made also considering one-hour Fire Fighting works. The design of this water tank will be done as per WSD.

Determination of water requirement

* Residential Building purposes

Water requirement	$=225 L / P / D$
No. of floor	$=6$
No. of Persons	$=250$ (Assume)
Total req. vol. of water (Res.)	$=225 \times 250=56000 L / P / D$

* Commercial \& Official Building purposes

Water requirement	$=45 L / P / D$
No. of floor	$=12$
No. of Persons	$=2600$ (Assume)
Total req. vol. of water (Com)	$=45 \times 2600=117000 L / P / D$
So, Total required volume of water	$=56000+117000=173000 \mathrm{~L} / P / D$

* Fire safety purposes

Consider, water storage for 1 hr . fighting,
Water requirement for 1 floor $=265 \mathrm{gal} / \mathrm{min}$

$$
=250 \times 60 \mathrm{gal} / \mathrm{hr} .=15000 \mathrm{gal} / \mathrm{hr} .
$$

\therefore Water requirement for two floor $=2 \times 15000 \mathrm{gal}$

$$
\begin{aligned}
& =30000 \mathrm{gal} \\
& =113562.36 \mathrm{~L}=113563 \mathrm{~L}
\end{aligned}
$$

Total water requirement for one-day storage $=(113563+173000)$

$$
=286563 \mathrm{~L}
$$

There are two underground water tanks,
\therefore Water requirement for tank $\quad=\frac{286563}{2}=143282 \mathrm{~L}=143.28 \mathrm{~m}^{3}$
$=143.28 \times 3.28^{3} \mathrm{ft}^{3}$
$=5056 \mathrm{ft}^{3}$

Tank dimension

Let,
Inside width dimension, $B=20 f t=6.09 \mathrm{~m}$
Height $=7.5 \mathrm{ft}$
Free board $=0.5 \mathrm{ft}$
Final height $=7.5+0.5=8 f t=2.44 \mathrm{~m}$
So inside length dimension, $L=\frac{5056}{20 \times 7.5}=33.71 \mathrm{ft}=35 \mathrm{ft}$
Hence the dimension of the tank compartment will be 20 ft wide and 35 ft long.

Figure 3.32: Underground water reservoir

A. Design of long walls

Both long walls will be designed considering empty condition.
Pressure exerted by dry soil $=w h \frac{1-\sin \phi}{1+\sin \phi}$

$$
\begin{aligned}
= & 20 \times 2.44 \times \frac{1-\sin 30}{1+\sin 30}=16.27 \mathrm{kN} / \mathrm{m}^{2} \\
& \therefore p=16.27 \mathrm{kN} / \mathrm{m}^{2}
\end{aligned}
$$

Thickness of the wall:

Moment at outer face of long wall

$$
\begin{gathered}
=\frac{p h^{2}}{33.5}=\frac{16.27 \times 2.44^{2}}{33.5}=2.89 \mathrm{kN}-\mathrm{m} / \mathrm{m} \\
=\frac{2.89 \times 1000}{4.448 \times 0.3048} \times \frac{12}{1000} \\
=25.57 \mathrm{k}-\mathrm{in}
\end{gathered}
$$

(Per meter run)

So, tension per feet run $=25.57 \times 0.3048=7.80 k$-in/ft
Moment at inner face of long wall,

$$
\begin{aligned}
M_{\max }= & \frac{p h^{2}}{15}=\frac{16.27 \times 2.44^{2}}{15}=6.46 \mathrm{kN}-m / m \\
& =57.17 \mathrm{k} \text {-in (per meter run) }=17.43 \mathrm{k} \text {-in (per ft run) }
\end{aligned}
$$

From cracking consideration, the thickness of long wall will be determined.
$\mathrm{D}=$ total thickness of tank wall,

$$
\begin{aligned}
& M=\frac{F_{c t} b D^{2}}{6} \\
\therefore & D^{2}=\frac{6 \times 17.43}{0.410 \times 12}
\end{aligned}
$$

$D=4.61^{\prime \prime} \equiv 10.0^{\prime \prime}$ (preferable minimum thickness)
[Here $f_{c t}=(6 \rightarrow 8) \sqrt{f_{c}}$

$$
\text { Let, } \left.f_{c t}=7.5 \sqrt{f_{c^{\prime}}}=7.5 \times \sqrt{3000}=410.79 p s i\right]
$$

\therefore Effective depth $=10-1.5=8.50$ inch

Vertical reinforcement:

$\mathrm{f}^{\prime}{ }_{\mathrm{c}}=3000 \mathrm{psi}$
$\mathrm{f}_{\mathrm{c}}=0.45 \mathrm{f}^{\prime}{ }_{\mathrm{c}}=0.45 \times 3000=1350 \mathrm{psi}$
$\mathrm{f}_{\mathrm{y}}=60,000$ psi.
$\mathrm{f}_{\mathrm{s}}=0.50 \mathrm{f}_{\mathrm{y}}=0.50 \times 60000=30000 \mathrm{psi}$
$\mathrm{E}_{\mathrm{s}}=29 \times 10^{6} \mathrm{psi}$
$\mathrm{E}_{\mathrm{C}}=57,000 \sqrt{3000}=3.1 \times 10^{6} \mathrm{psi}$
$\mathrm{n}=\frac{\mathrm{E}_{\mathrm{S}}}{\mathrm{E}_{\mathrm{C}}}=\frac{29 \times 10^{6}}{3.1 \times 10^{6}}=9$
$\mathrm{r}=\frac{\mathrm{f}_{\mathrm{S}}}{\mathrm{f}_{\mathrm{C}}}=\frac{30000}{1350}=22.22$
$\mathrm{k}=\frac{\mathrm{n}}{\mathrm{n}+\mathrm{r}}=\frac{9}{9+22.22}=0.288$
$\mathrm{J}=1-\frac{\mathrm{K}}{3}=1-\frac{0.288}{3}=0.904$

Vertical Reinforcement for inner face of wall

$\mathrm{M}=17.43 \mathrm{k}$ - in (per ft run)
Steel requirement, $A_{S}=\frac{M}{f_{s} j d}=\frac{17.43 * 1000}{30000 * 0.904 * 8.5}=0.076 \mathrm{in}^{2} / \mathrm{ft}$

$$
\text { Minimum } A_{s}=0.003 b h=0.003 \times 12 \times 10=0.36 \mathrm{in}^{2} / \mathrm{ft}
$$

Selected $\mathrm{A}_{\mathrm{s}}=0.36 \mathrm{in}^{2} / \mathrm{ft}$.
Use $\phi 12 \mathrm{~mm}$, spacing $=\frac{0.20 \times 12}{0.36}=6.67 " \equiv 6.5^{\prime \prime} \mathrm{c} / \mathrm{c}$
$S_{\text {max }}=3 \mathrm{~h}=3 \times 10^{\prime \prime}=30^{\prime \prime}$
$S_{\text {max }}=18 "$
So, use $\phi 12 \mathrm{~mm}$ @ 6.5"c/c.

Vertical Reinforcement for outer face of wall

$\mathrm{M}=7.80$ kip-in (per ft run).
$A_{S}=\frac{M}{f_{s} j d}=\frac{7.80 * 1000}{30000 * 0.904 * 8.5}=0.034 \mathrm{in}^{2} / \mathrm{ft}$
Minimum $A_{s}=0.003 b h=0.003 \times 12 \times 10=0.36$ in $^{2} / f t$
Selected $\mathrm{A}_{\mathrm{s}}=0.36 \mathrm{in}^{2} / \mathrm{ft}$.
Use $\phi 12 \mathrm{~mm}$, spacing $=\frac{0.20 \times 12}{0.36}=6.67^{\prime \prime} \equiv 6.5^{\prime \prime} \mathrm{c} / \mathrm{c}$
So, use $\phi 12 \mathrm{~mm}$ @ 6.5"c/c.

Horizontal reinforcement:

Minimum steel will be placed as binder.
Minimum $A_{s}=0.003 b h=0.003 \times 12 \times 10=0.36 \mathrm{in}^{2} / f t$
Use $\phi 12 \mathrm{~mm}$, spacing $=\frac{0.20 \times 12}{0.36}=6.67^{\prime \prime} \equiv 6.5^{\prime \prime} \mathrm{c} / \mathrm{c}$
So, use $\phi 12 \mathrm{~mm} @ 6.5 \mathrm{cc} / \mathrm{c}$ at both faces.

B. Design of short wall

Earth pressure at the bottom, $\mathrm{P}=16.27 \mathrm{kN} / \mathrm{m}^{2}$
Max moment at the center, $\mathrm{M}=\frac{P L^{2}}{12}$

$$
\begin{aligned}
& L=20+\frac{10}{12}=20.83 \mathrm{ft}=6.35 \mathrm{~m} \\
& M=\frac{16.27 \times 6.35^{2}}{12}=54.67 \mathrm{k}-\mathrm{in} / \mathrm{meter}=16.67 \mathrm{k}-\mathrm{in} / \mathrm{ft}
\end{aligned}
$$

Now check ‘d’,

$$
M_{\max }=\frac{f_{c}}{2} j k b d^{2}
$$

$\therefore d=\sqrt{\frac{2 \times 16.67}{1.35 \times 0.288 \times 0.904 \times 12}}=2.81^{\prime \prime}<$ provided $d=8.5^{\circ}$ ok.

Vertical reinforcement:

$\mathrm{M}=16.67 \mathrm{kip}-\mathrm{in}$ (per ft run).
$A_{S}=\frac{M}{f_{s} j d}=\frac{16.67 * 1000}{30000 * 0.904 * 8.5}=0.072 \mathrm{in}^{2} / \mathrm{ft}$
Minimum $A_{s}=0.003 b h=0.003 \times 12 \times 10=0.36$ in $^{2} / f t$
Selected $\mathrm{A}_{\mathrm{s}}=0.36 \mathrm{in}^{2} / \mathrm{ft}$.
Use $\phi 12 \mathrm{~mm}$, spacing $=\frac{0.20 \times 12}{0.36}=6.67 \mathrm{"} \equiv 6.5^{\prime \prime} \mathrm{c} / \mathrm{c}$
So, use $\phi 12 \mathrm{~mm} @ 6.5^{\mathrm{c}} \mathrm{c} / \mathrm{c}$ at both faces.

Horizontal reinforcement:

Minimum steel will be placed as binder.
Minimum $A_{s}=0.003 b h=0.003 \times 12 \times 10=0.36 \mathrm{in}^{2} / f t$
Use $\phi 12 \mathrm{~mm}$, spacing $=\frac{0.20 \times 12}{0.36}=6.67 " \equiv 6.5^{\prime \prime} \mathrm{c} / \mathrm{c}$
So, use $\phi 12 \mathrm{~mm} @ 6.5^{\mathrm{c}} \mathrm{c} / \mathrm{c}$ at both faces.

C. Design of top slab

$\frac{\mathrm{L}}{\mathrm{B}}=\frac{35}{20}=1.75 \leq 2$
So, it is a two- way slab.

Minimum thickness of the slab,
$h=\frac{2(20+35)}{180} x 12=7.33^{\prime \prime}$ And take $\mathrm{h}=10^{\prime \prime}$

Load calculation:

Live load
Self-weight of the slab
Floor finish (assume)
Vehicular load

$$
=10 \mathrm{psf} .
$$

$$
=\frac{10}{12} \times 150=124.5 \mathrm{psf} .
$$

$$
=10 \mathrm{psf} .
$$

$$
=50 \mathrm{psf} .
$$

d check:
$\frac{a}{b}=20 / 35=0.57$

Case 1

For positive moment, $\mathrm{C}_{\mathrm{a}} \mathrm{dl}=0.084$

$$
\mathrm{C}_{\mathrm{b}} \mathrm{dl}=0.009
$$

$M_{\text {a.positive }}=0.084 \times 0.195 \times 20^{2}=78.62 k$-in
$\mathrm{M}_{\mathrm{b} \text {.positive }}=0.009 \times 0.195 \times 35^{2}=25.80 \mathrm{k}$-in

$$
M_{\max }=\frac{f_{c}}{2} j k b d^{2}
$$

$\therefore d=\sqrt{\frac{2 x 78.62}{1.35 \times 0.288 \times 0.904 \times 12}}=6.11^{\prime \prime}<$ provided $d=10-1=9 "$ ok.

Reinforcement calculation:

- Main steel (short direction)
$\mathrm{M}=78.62$ kip-in (per ft. run).
$A_{S}=\frac{M}{f_{s} j d}=\frac{78.62 * 1000}{30000 * 0.904 * 9}=0.32 \mathrm{in}^{2} / \mathrm{ft}$
Minimum $A_{s}=0.003 b h=0.003 \times 12 \times 10=0.36 \mathrm{in}^{2} / f t$
Selected $\mathrm{A}_{\mathrm{s}}=0.36 \mathrm{in}^{2} / \mathrm{ft}$.
Use $\phi 12 \mathrm{~mm}$, spacing $=\frac{0.20 \times 12}{0.36}=6.67 " \equiv 6.5^{\prime \prime} \mathrm{c} / \mathrm{c}$
So, use $\phi 12 \mathrm{~mm}$ @ 6.5"c/c.

- Main steel (long direction)

$\mathrm{M}=25.80$ kip-in (per ft. run).
$A_{S}=\frac{M}{f_{s} j d}=\frac{25.80 * 1000}{30000 * 0.904 * 9}=0.105 \mathrm{in}^{2} / \mathrm{ft}$
Minimum $A_{s}=0.003 b h=0.003 \times 12 \times 10=0.36 \mathrm{in}^{2} / f t$
Selected $\mathrm{A}_{\mathrm{s}}=0.36 \mathrm{in}^{2} / \mathrm{ft}$.
Use $\phi 12 \mathrm{~mm}$, spacing $=\frac{0.20 \times 12}{0.36}=6.67 " \equiv 6.5^{\prime \prime} \mathrm{c} / \mathrm{c}$
So, use $\phi 12 \mathrm{~mm}$ @ 6.5"c/c.

D. Design of bottom slab:

$\frac{\mathrm{L}}{\mathrm{B}}=\frac{35}{20}=1.75 \leq 2$
So, it is a two- way slab.
Let the thickness of the slab is $20^{\prime \prime}$.

Load calculation:

Water pressure $=62.5 \times 7.5=468.75 \mathrm{psf}$.
Self-weight of the slab $=\frac{20}{12} \times 150=250 \mathrm{psf}$.
Floor finish \& LL (assume) $\quad=20.0 \mathrm{psf}$.

$$
\text { Total load, W = } 738.75 \text { psf. }=0.738 \text { ksf }
$$

Check for depth \boldsymbol{d} :

$\frac{\mathrm{a}}{\mathrm{b}}=20 / 35=0.57$
Case 1

For positive moment, $\mathrm{C}_{\mathrm{a}} \mathrm{dl}=0.084$

$$
\mathrm{C}_{\mathrm{b}} \mathrm{dl}=0.009
$$

$\mathrm{M}_{\text {a.positive }}=0.084 \times 0.738 \times 20^{2}=297.56 \mathrm{k}$-in
$\mathrm{M}_{\mathrm{b} \text {.positive }}=0.009 \times 0.738 \times 35^{2}=97.64 \mathrm{k}$-in

$$
\begin{gathered}
M_{\max }=\frac{f_{c}}{2} j k b d^{2} \\
\therefore d=\sqrt{\frac{2 \times 297.56}{1.35 \times 0.288 \times 0.904 \times 12}}=11.88^{\prime \prime}<\text { provided } d=20-1=19^{\prime \prime} \text { ok. }
\end{gathered}
$$

Check against floatation:

The whole tank must be checked against floatation when it is empty.
Because of saturated subsoil, there will be uplift pressure on the bottom slab.

- Total Up-Ward flottation force, $\mathrm{P}_{\mathrm{u}}=\gamma \mathrm{h} \times \mathrm{B} \times \mathrm{L}$

$$
=(62.5 \times 8) \times(20+1.67) \times(35+1.67)=397.319 k
$$

- Weight of 10 " thick long and short walls

$$
=0.83(2 \times 21.67+2 \times 36.67) \times 8 \times 150=116.213 k
$$

$$
\text { Weight of } 10^{\prime \prime} \text { top slab } \quad=0.83 \times 21.67 \times 36.67 \times 150=98.932 k
$$

$$
\text { Weight of } 20^{\prime \prime} \text { base slab } \quad=1.67 \times 21.67 \times 41.67 \times 150=199.06 k
$$

$$
\text { Total downward weight } \quad=414.205 k
$$

This is greater than floatation force $397.319 k$, so reservoir is safe in design.

Reinforcement calculation:

- Main steel (short direction)

$M=297.56$ kip-in (per ft. run).
$A_{S}=\frac{M}{f_{s} j d}=\frac{297.56 * 1000}{30000 * 0.904 * 19}=0.58 \mathrm{in}^{2} / \mathrm{ft}$
Minimum $A_{s}=0.003 b h=0.003 \times 12 x 20=0.72 \mathrm{in}^{2} / f t$
Selected $\mathrm{A}_{\mathrm{s}}=0.72 \mathrm{in}^{2} / \mathrm{ft}$.
Use $\phi 12 \mathrm{~mm}$, spacing $=\frac{0.20 \times 12}{0.72}=3.33^{\prime \prime} \equiv 3^{\prime \prime} c / c$
So, use $\phi 12 \mathrm{~mm}$ @ 3"c/c.

- Main steel (long direction)

$\mathrm{M}=97.64$ kip-in (per ft. run).
$A_{S}=\frac{M}{f_{s} j d}=\frac{97.64 * 1000}{30000 * 0.904 * 19}=0.189 \mathrm{in}^{2} / \mathrm{ft}$
Minimum $A_{s}=0.003 \mathrm{bh}=0.003 \times 12 \times 20=0.72 \mathrm{in}^{2} / \mathrm{ft}$
Selected $\mathrm{A}_{\mathrm{s}}=0.72 \mathrm{in}^{2} / \mathrm{ft}$.
Use $\phi 12 \mathrm{~mm}$, spacing $=\frac{0.20 \times 12}{0.72}=3.33^{\prime \prime} \equiv 3^{\prime \prime} c / c$
So, use $\phi 12 \mathrm{~mm}$ @ 3"c/c.

Reinforcement details of underground water reservoir are shown in Figures 3.33~3.37.

Figure 3.33: Details of reinforcement arrangement of Wall of the underground water reservoir.

Figure 3.34: Details of section A-A of the underground water reservoir.

Figure 3.35: Details of section B-B of the underground water reservoir.

Figure 3.36: Reinforcement details of bottom slab of the underground water reservoir.

Figure 3.37: Reinforcement details of top slab of the underground water reservoir.

CHAPTER 4

CONCLUSIONS \& RECOMMENDATIONS

4.1 Conclusions

From the study, it is observed that:

* Preparation of commercial Floor plans requires comparatively more efforts, attention and considerations according to the need of rentable spaces, owner desires, aesthetics, cost, safety and comfort of the visitors.
* Proper knowledge on software is essential for analysis of high rise structure.
* Selection of loadings, materials \& their properties should meet the requirement of building codes properly.

4.2 Recommendations

Based on the objectives, scopes and limitations of the study (stated in Chapter 1), few recommendations can be proposed for further studies:

- Column-beam joints are the important design consideration in a high rise structure which were not done in this study is highly recommended in further studies.
- This study was conducted based on edge supported floor system, further analyses considering other floor system such as flat plate or flat slab can be considered to see the change in moment, shear, axial forces etc. in different building elements and also their cross-sectional dimensions as well reinforcement requirements.
- Sway and deflection control may be considered in analysis and design.

REFERENCES

1. "Reinforced Concrete Fundamentals", Ferguson P. M., Breen J. E. and Jirsa J. O.; $5^{\text {th }}$ Edition, John Wiley \& Sons, Inc., New York, 1987
2. "Tall Building Structures", Smith B.S. and Coull A.; John Wiley \& Sons, Inc., New York, 1991.
3. "Bangladesh National Building Code", 1 ${ }^{\text {st }}$ Edition, City Art Press, Dhaka, Bangladesh, 1993.
4. "Seismic Design of Buildings and Bridges", Williams A.; Oxford University press, New York, 2003.
5. "Reinforced Concrete Design", $3^{\text {rd }}$ Edition, Everard N. J.; SCHAUM’S outlines, Tata McGraw-Hill Publishing Company Ltd, New Delhi, India, 2004.
6. "American Concrete Institute Building Design Code", ACI, New York, USA, 2011.
7. "Design of Concrete Structures", $14^{\text {th }}$ Edition, Nilson A. H., Darwin D. and Dolan, C. W.; McGraw-Hill Publishing Company Ltd, New Delhi, India, 2014.
