ACKNOWLEDGEMENT

The research "A study on saturation flow & capacity analysis on selected intersections at Chittagong city" has been conducted in partial fulfillment of the requirements for the degree of Bachelor of Science (B.Sc.) in Civil Engineering. This critical work came to life due to the unconditional help and co-operation in different ways by many people. We express our gratefulness them for their assistance in preparation of this project and thesis.

First of all, we like to show our highest gratitude to the Almighty Allah Subhana Wa Ta'la for his mercy, blessings and guidance while we were preparing our thesis.

It is the broadness of the government to pass the Private University Act 1993 for making a scope of education for all. It wouldn't have been possible on our behalf to have earned the bachelor degree in civil engineering if a private university like Stamford University Bangladesh would not have taken the challenge to create civil Engineers. We are grateful to Late Prof. Dr. M. A. Hannan Feroz, the Honorable President and Vice Chancellor of the Stamford University Bangladesh for this praise worthy step.

We are indebted to the supervisor of our project and thesis, Anika Nowshin Mowrin, Assistant Professor of the Department of Civil Engineering, Stamford University Bangladesh for making us believe that logic is power, and with the right principles and dedication a man can achieve anything. Thank you for your assistance and your patience, you are our role model.

We are very much grateful to our peers who always assisted and helped throughout our study at Stamford University, We consider it a privilege to have studied with such dignified people.

ABSTRACT

Chittagong has now been turned into 83rd most populous city of the world and 49th most populous city in the Asia as well as the 2nd most populous city in Bangladesh after Dhaka (World Statistical Data). As a result of huge population, traffic and transportation problems increasing day by day. As urbanization has progressed without plan and precaution, the city dwellers now witness traffic congestion at the late hours of the night. The traffic system of the city has already collapsed as the vehicles can't run on the main roads of the port city Chittagong due to traffic jam. Reaching one's respective destination in time is dream that is only warning.

At presents pedestrian crossing is one of the greatest challenges for the traffic and safety engineering communities. Present study deals with saturation flow & capacity analysis at selected intersections of Chittagong City. Tigerpass intersection has been selected as study area. Tigerpass circle is one of the busiest as well as one of the main root of the city. There are four directions of Tigerpass intersection named, Tigerpass to Dewanhat road; Tigerpass to Lalkhan Bazar road; Tigerpass to Station road & Tigerpass to Ambagan road.

Two methods are used in the study. They are field survey and photographic survey. A video of traffic flow of Tigerpass intersection is recorded firstly for the study work. All data are collected from the video records and then some calculations are done. Saturation flow, capacity and operating speed of vehicles were calculated for the intersection. Two histograms are also created for Tigerpass to Dewanhat intersection and Tigerpass to Lalkhan Bazar intersection to calculate the saturation flow. The road surface quality, road marking and signal system are observed from this intersection. Overall it is pointed out from the study that, the traffic flow condition at Tigerpass intersection is an unstable flow.

The present study is focused mainly on traffic volume capacity analysis only. The study is also related to the capacity of a roadway and its ability to accommodate traffic. Speed-flow studies are useful to evaluate the more parameters in transportation engineering. There is a scope on speed flow study on urban road links for future work.

TABLE OF CONTENTS

	Page No.
ACKNOWLEDGEMENT	Ι
ABSTRACT	II
LIST OF TABLES	VI
LIST OF FIGURES	VII
LIST OF PHOTOS	VIII
CHAPTER ONE: INTRODUCTION	1-3
1.1 Introduction	1
1.2 Background	1-2
1.3 Objectives of the study	2-3
1.4 Future scope of the study	3
1.5 Limitation of the study	3
1.6 Organization of the thesis work	3
1.7 Summary	3
CHAPTER TWO: LITERATURE REVIEW	4-24
2.1 Introduction	4-5
2.2 Review of Literature	5-6
2.3 Traffic signs	6
2.4 Classification	6-7
2.5 Types of intersections	7-11
2.6 Definition of volume	11
2.6.1 Definitions and useful parameters	11-13
2.7 Define flow	13
2.8 Speed	14
2.9 Delay	14
2.9.1 Types of delay	14
2.9.2 Stopped time delay	15
2.9.3 Approach delay	15
2.9.4 Travel time delay	15
2.9.5 Time-in-queue delay	15
2.9.6 Control delay	15
2.10 Travel time	15-16

2.10.1 Application of travel time and delay data	16
2.11 Saturation Flow	16
2.11.1 Factors affecting the Saturation Flow	17
2.11.2 Lost Time	17
2.11.3 Effective green time	17
2.12 Capacity	17-18
2.12.1 Basic capacity	18
2.12.2 Possible capacity	18
2.12.3 Practical capacity	18
2.12.4 Capacity under uninterrupted condition	18-19
2.13 Level of service (LOS)	19
2.13.1 Signalized intersections level of service	20
2.13.2 Un-signalized intersections level of service	20-23
2.13.3 Factors affecting level of service	23
2.14 Summary	24

CHAPTER THREE: METHODOLOGY	25-30
----------------------------	-------

3.1 General	25
3.2 Site Selection	25-26
3.3 Work Procedure	27
3.4 Flow Chart	28
3.5 Statement of Flow Chart	29
3.6 Field Survey	30
3.7 Photographic Survey	30
3.8 Summary	30

CHAPTER FOUR: DATA COLLECTION AND ANALYSIS 31-55

4.1 General	31
4.2 Traffic count and data analysis for Saturation Flow calculation of Tigerpass to Dewanhat Intersection	31-37
4.3 Histogram of Saturation Flow for Tigerpass to Dewanhat Intersection 4.4 Saturation Flow Calculation Of Tigerpass to Dewanhat	38
Intersection 4.5 Traffic count and data analysis for Saturation Flow calculation	39
of Tigerpass to Lalkhan Bazar Intersection 4.6 Histogram Of Saturation Flow for Tigerpass to Lalkhan Bazar	40-45
Intersection	46
4.7 Saturation Flow Calculation of Tigerpass to Lalkhan Bazar Intersection	47-48

4.8 Traffic Count for Operating Speed Analysis	48
4.9 Data Analysis for Operating Speed Calculation	49-50
4.10 Operating Speed Calculation (Tigerpass Intersection)	50
4.11 Roadway Capacity Calculation	51
4.12 Observation from photographic survey	52-55

CHAPTER FIVE: CONCLUSION AND 56-57 RECOMMENDATION

5.1 General	56
5.2 Findings	56-57
5.3 Recommendation	57
5.4 Limitations	57
5.5 Summary	57
REFERENCES	58

APPENDICES 59-62

LIST OF TABLES

Table No.	Title	Page No.	
Table 2.1	PCU values of different types of vehicles	13	
Table 2.2	Capacity of roadway as per HCM-1994	19	
Table 2.3	Level of service criteria for signalized intersection	20	
Table 2.4	Level of service criteria for un-signalized intersection	21	

LIST OF FIGURES

Figure No.	Title	Page No.	
Figure 2.1	Birds-eye photograph of a channelized t-intersection and typical three-leg or T-intersection.	8-9	
Figure 2.2	Birds-eye photograph of a channelized Four-leg intersection and typical Four-leg or cross intersection.	9-10	
Figure 2.3	Birds-eye photograph of a channelized Multi-leg intersection and typical Multi-leg intersection.	11	

LIST OF PHOTOS

Photos No.	Title	Page No.	
Photo 3.1	Map & Photography of Tigerpass Intersection.	25-26	
Photo 4.1	Poor surface quality of Tigerpass intersection.	52	
Photo 4.2	Damage road surface of Tigerpass intersection	53	
Photo 4.3	Water logged on road side of Tigerpass intersection	53	
Photo 4.4	Manhole place in wrong position of Tigerpass intersection	54	
Photo 4.5	Poor drainage surface with waste of Tigerpass intersection	54	
Photo 4.6	Poor zebra crossing marking quality of Tigerpass intersection.	55	
Photo 4.7	Vehicles stand on zebra crossing of Tigerpass intersection.	55	