
DEFENSE AGAINST SYN FLOODING

ATTACK USING PSO ALGORITHOM

 Utpal Chandra Mohanta

 CSE 04906421

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

BSc in Computer Science and Engineering.

DEPARTMENT OF COMPUTER SCIENCE

STAMFORD UNIVERSITY BANGLADESH

November, 2016

iv

 ABSTRACT

SYN flooding attack is a threat that has been designed based on vulnerabilities of the connection

establishment phase of the TCP protocol. In this attack, some sources send a large number of TCP

SYN segments, without completing the third handshake step to quickly exhaust connection resources

of the victim server. Hence, a main part of the server’s buffer space is allocated to the attack half open

connections and incoming new connection requests will be blocked. This paper proposes a novel

framework, in which, the defense issue is formulated as an optimization problem. Then it employs the

particle swarm optimization (PSO) algorithm to solve this optimization problem. Our theoretical

analysis and packet-level simulations show that the proposed defense strategy decreases the number

of blocked TCP connection requests and cuts down share of attack connections from the buffer space.

v

 ACKNOWLEDGEMENTS

Frist of all I would like to thank the almighty GOD. Today I am successful in completing my

work with such ease because He gave me the ability, chance and co-operating supervisor.

I would like to take the opportunity to express our gratitude to Lecturer Maliha Mahbub, my

respected supervisor. Although she was loaded with several other activities, she gave me

more than enough time in this work. She not only gave me time but also proper guidance and

valuable advice whenever I faced with any difficulties. Her comments and guidance helped

me in preparing my thesis report.

I wish to express my sincere gratitude to Lecturer, Tarin Kazi for her constant guidance

throughout the course of the work and many useful discussions which enabled me to know

the subtleties of the subject in proper way.

And I would also like to take the opportunity to express our gratitude to our honorable

Chairman, Prof. Dr. Kamruddin Md. Nur, Department of Computer Science and Engineering.

Last of all I am grateful to my family ; Who are , always with me in my every step of life

vi

 DECLARATION

I, hereby, declare that the work presented in this Thesis is the outcome of the investigation

performed by me under the supervision of Maliha Mahbub, Lecturer, Department of

Computer Science, Stamford University Bangladesh. I also declare that no part of this

Thesis and thereof has been or is being submitted elsewhere for the award of any degree

or Diploma.

 Countersigned Signature

…………………………….. ….………………………

 (Maliha Mahbub) (Utpal Chandra Mohanta)

 Supervisor Candidate

vii

TABLE OF CONTENTS

ABSTRACT iv

ACKNOWLEDGEMENTS v

TABLE OF CONTENTS vi

LIST OF TABLES vii

LIST OF FIGURES ix

Chapter 1: INTRODUCTION 1

Chapter 2: RELATED WORKS 4

Chapter 3: OBJECTIVE AND SCOPE

 3.1 SYN ATTACK 8

 3.1.1 Introduction 8

 3.1.2 Transmission Control Protocol (TCP) 8

 3.2 TCP SYN Flood Attack 9

 3.3 Particle swarm optimization algorithm 11

 3.4 Scope of the problem 12

Chapter 4: METHODOLOGY

 4.1 Framework 14

 4.2 Objective Function 16

 4.3 Flowchart 18

 4.4 Pseudo Code 19

viii

Chapter 5: IMPLEMENTATION AND SIMULATION

 5.1 Environment 21

 5.2 Parameter table 21

 5.3 Simulation Setup 22

 5.4 Simulation Result 22

 5.4.1 Scenario 1: Increase of T and m in Low attack intensity

 (k =0.1) 23

 5.4.2 Scenario 2: Increase of T and m in Medium attack intensity

 (k =1) 25

 5.4.3 Scenario 3: Increase of T and m in High attack intensity

 (k =2) 27

 5.4.4 Scenario 4: Increase of T and m in various attack intensity

 (k =0.1,1,2) 29

Chapter 6: CONCLUSION

 6.1 Conclusion 32

 6.2 Future plan 32

APPENDIX 33

BIBLIOGRAPHY 38

ix

LIST OF TABLES

5.1: Table of Parameters … ………………………………………………… 21

 LIST OF FIGURES

3.1: TCP Three-way Handshake ………………………………………………… 9

3.2: TCP SYN flood attack ……………... 10

4.1: Abstract model for the Self-securing Server Running PSO_SYN 15

4.2:PSO_SYN in operation………………………….…………………......................... 18

5.4.1: Variations of T computed by PSO_SYN in low attack intensity………. 23

5.4.2: Variations of m computed by PSO_SYN in low attack intensity………. 24

5.4.3: Variations of T computed by PSO_SYN in medium attack intensity……. 25

5.4.4: Variations of m computed by PSO_SYN in medium attack intensity……. 26

5.4.5: Variations of T computed by PSO_SYN in high attack intensity …… . . 27

5.4.6: Variations of m computed by PSO_SYN in high attack intensity………. .. 28

5.4.7: Variations of T computed by PSO_SYN in variable attack intensity ...………... 29

5.4.8: Variations of m computed by PSO_SYN in variable attack intensity………. 30

1

 Chapter 1

 INTRODUCTION

2

There are several types of important attacks, such as the worm, virus, Trojan horse and

especially Denial of Service (DoS), each of which causes crucial problems to usual business

operations. In spite of extensive efforts to provide robustness for the systems against DoS

attack, this attack is yet a serious problem on the Internet. Traditionally, DoS attacks aim at

degrading the availability and quality of services, by consuming the service resources to

make it unavailable. In doing this, DoS attacks may send to the victim a high-rate traffic that

exhausts service resources. Statistical evaluations show that DoS ranks at the fourth place in

the list of the most venomous attack classes against information systems. Recently, many

efforts have been made, in parallel with the evolution of DoS attacks, in the field of

prevention and detection in networking security. In terms of prevention, some of the

approaches that have been proposed include egress or ingress filtering, disabling unused

services, and honey pots. In other works, a congestion pricing approach] and a router-based

technique. have been employed to neutralize DoS attacks.

SYN FLOOD ATTACK:

The recent DoS attacks on popular web sites like Yahoo and eBay and their consequent

disruption of services have exposed the vulnerability of the Internet to Distributed Denial of

Service (DDoS) attacks. It has been shown that more than 90% of the DoS attacks use TCP.

The TCP SYN flooding is the most commonly-used attack. Not only the Web servers but

also any system connected to the Internet providing TCP-based network services, such as

FTP servers or Mail servers is susceptible to the TCP SYN flooding attacks. A TCP

connection is established in what is known as a 3-way handshake. When a client efforts to

start a TCP connection to a server, first, the client requests a connection by sending a SYN

packet to the server. Then, the server returns a SYN–ACK, to the client. Finally, the client

acknowledges the SYN–ACK with an ACK, at which point the connection is established and

data transfer commences. In a SYN flooding attack, attackers use this protocol to their

benefit. The attacker sends a large number of SYN packets to the server. Each of these

packets has to be handled like a connection request by the server, so the server must answer

with a SYN–ACK. The attacker then has two options. One is simply not to answer to the

SYN–ACK, which will cause the server to have a half-open connection [1]. This would allow

the server to block any further packets from the attacker’s IP address, ending the attack

prematurely. Then again, the attacker spoofs the IP address of some unsuspecting client. The

server logically answers to this IP address, but the legitimate client actually residing at this IP

address will decline this SYN–ACK as it did not initiate the connection. The result is that the

server is left waiting for a reply from a large number of connections. Since resource of any

system is limited, then, there are a limited number of connections a server can handle. Once

all of these connections are active, waiting for replies that will never come, no new

connections can be established whether valid or not. Note that SYN flooding attacks aim to

exhaust TCP buffer space and do not affect the parameters such as link bandwidth and

processing resources.

3

There are some proposed defenses for this attack. Zuquete proposes SYN cookies to defense

against SYN flooding attacks. Some other works have used mathematical models to

analytically study of the DoS attacks. Chang proposed a simple queuing model for the SYN

flooding attack. Long et al. proposed two queuing models for the DoS attacks in order to

obtain the packet delay jitter and the loss probability. Wang et al. studies the DoS attacks

analytically by using a more general queue model, a two-dimensional embedded Markov

chain, which can more accurately capture the dynamics of the actual DoS attacks[2]. In ,

Gligor proposed that a Maximum Waiting Time (MWT) must be related with every service

presented by a computer system. Response time refers to the delay between the request for a

service and its provision, whereas, MWT equals to the maximum acceptable response time.

In the nonexistence of DOS attacks, a user request should stop within the MWT on a

machine. Warrender and colleagues, suggested a general host-based intrusion detection

model, which analyzes system call sequences to discover anomalies. They claim that their

system can detect DOS attacks. In this method, if a program uses up extra of a resource, then

other programs will suffer. Hussain and Blazek evaluated traffic arrivals and corresponding

ramp-up activities in. To detect attacks, packet rate against time is analyzed instead of only

the packet header. This is done, in order that IP address spoofing cannot deceive the attack

detection procedure. Khan and Traore analyzed the influence of DoS attacks on three

parameters: the queue-growth-rate, the arrival rate, and the response time, which were used

for the attack detection.

OUR APPROACH:

As a novel approach to secure computer systems against the SYN flooding DoS attacks, this

paper formulates the defense issue as an optimization problem and employs the PSO

algorithm to find an optimal solution for this problem. For this purpose, I first use queuing

theory to model the under-attack server and then formulate the defense strategy based on the

optimization theory. The derived solution leads to a dynamic defense strategy which

monitors the system performance continually and then tries to direct the system to the best

defense position by appropriate setting of some system parameters. A preliminary version of

this work has been published in. This paper takes one giant leap to complete this research.

For this purpose, after that it designs a PSO-based defense mechanism, evaluates it from two

different points of view. In one hand, it gives a theoretical analysis and shows that the

proposed algorithm certainly converges to an optimal point in which the server achieves its

possible best performance. On the other hand, it implements the algorithm in matlab

environment by some modifications over TCP sink and TCP full modules and then evaluates

it by a packet level simulative study which shows its success against SYN flooding attacks.

The rest of the paper is organized as follows. In Section I present an introduction to PSO

method. In Section, we discuss how the under-attack server can employ PSO algorithm to

defend against SYN flooding attacks. Section gives a theoretical analysis to examine

convergence of the proposed algorithm. Implementation issues and the simulation setup are

discussed in Section. Section brings simulation results and finally Section 7 presents

concluding remarks.

4

Chapter 2

RELATED WORK

5

To counter SYN flooding attacks, several defense mechanisms have been proposed, such as:

 J. Lemon et al. [3] have analyzed the traffic at an Internet gateway and the results showed

that we can model the arrival rates of normal TCP SYN packets as a normal distribution.

Using this result, we described a new attack detection method taking the time variance of

arrival traffic into consideration. Simulation results show that our method can detect attacks

quickly and accurately regardless of the time variance of the traffic.

D.J Bernstein et al. [4] presents a simple and robust mechanism, called Change-Point

Monitoring (CPM), to detect denial of service (DoS) attacks. The core of CPM is based on

the inherent network protocol behaviors, and is an instance of the Sequential Change Point

Detection. To make the detection mechanism insensitive to sites and traffics patterns, a non-

parametric Cumulative Sum (CUSUM) method is applied.

C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram and D. Zamboni, et al.

[5] offers protection against SYN flooding for all hosts connected to the same local area

network, independent of their operating system or networking stack implementation.

S. Gavaskar, R. Surendiran and DR. E. Ramaraj et al. [6] have used three counters algorithm

to detect and migrate against TCP flood Attack.

All of these defense mechanisms are installed at the firewall of the victim server or inside the

victim server, thereby providing no hints about the sources of the SYN flooding. They have

to rely on the expensive IP trace back to locate the flooding sources. Because the defense line

is at, or close to, the victim, the network resources are also wasted by transmitting the

flooding packets.

Moreover, these defense mechanisms are stateful, i.e., states are maintained for each TCP

connection or state computation is required. Such a solution makes the defense mechanism

itself vulnerable to SYN flooding attacks. Recent experiments have shown that a specialized

firewall, which is designed to resist SYN floods, became futile under a flood of 14,000

packets per second [7]. The stateful defense mechanisms also degrade the end-to-end TCP

performance, e.g., incurring longer delays in setting up connections. In the absence of SYN

flooding attacks, all the overheads introduced by the defense mechanism become

superfluous. We, therefore, need a simple stateless mechanism to detect SYN flooding

attacks, which is immune to the SYN flooding attacks. Also, it is preferred to detect an attack

early near its source, so that one can easily trace the flooding source without resorting to

expensive IP trace back.

6

In our paper we have used Particle Swarm optimization to defense against SYN flood attack.

We have used an objective value which was evaluated by the PSO by updating the present

value of the time for which a request is holding idly in the buffer queue and is it completing

the full data transmission or not in every iteration for each request. And based on this, we

have maximized the buffer space so that more valid request can arrive and minimized the

buffer time so that no request can stay in the buffer queue for a long time.

7

Chapter 3

OBJECTIVE AND SCOPE

8

3.1 SYN ATTACK

3.1.1 Introduction

These days many people do their job by using computers. These computers could connect

each other through internet, which is based on TCP/IP. However, Transmission Control

Protocol (TCP) has weakness when computers connected. Using this weakness anyone can

attack the system. This attack is called TCP SYN flooding attack.

3.1.2 Transmission Control Protocol (TCP)

The Transmission Control Protocol/Internet Protocol (TCP/IP) suite has become the industry-

standard method of interconnecting hosts, networks, and the Internet. As such, it is seen as

the engine behind the Internet and networks worldwide.

Although TCP/IP supports a host of applications, both standard and nonstandard, these

applications could not exist without the foundation of a set of core protocols. Additionally, in

order to understand the capability of TCP/IP applications, an understanding of these core

protocols must be realized.

The TCP three-way handshake in Transmission Control Protocol (also called the TCP-

handshake; three message handshake and/or SYN-SYN-ACK) is the method used by TCP set

up a TCP/IP connection over an Internet Protocol based network. TCP's three way

handshaking technique is often referred to as "SYN-SYN-ACK" (or more accurately

SYN, SYN-ACK, ACK) because there are three messages transmitted by TCP to negotiate

and start a TCP session between two computers. The TCP handshaking mechanism is

designed so that two computers attempting to communicate can negotiate the parameters of

the network TCP socket connection before transmitting data such as SSH and HTTP web

browser requests.

This 3-way handshake process is also designed so that both ends can initiate and negotiate

separate TCP socket connections at the same time. Being able to negotiate multiple TCP

socket connections in both directions at the same time allows a single physical network

interface, such as Ethernet, to be multiplexed to transfer multiple streams of TCP data

simultaneously.

9

The three-way handshake mechanism is below.

 Fig-3.1: TCP Three-way Handshake

Step1: Machine A wants to initiate a connection with machine B, So machine A sends a

segment with SYN(Synchronize Sequence Number). This segment will inform the machine

B that Machine A would like to start a communication with Machine B and informs machine

B what sequence number it will start its segments with.

Sequence Numbers are mainly used to keep data in order.

Step2: Machine B will respond to Machine A with "Acknowledgment" (ACK) and SYN bits

set. Now machine B's ACK segment does two things; they are as below.

1. It acknowledges machine A's SYN segment.

2.It informs Machine A what sequence number it will start its data with.

 Step 3:Now finally machine A Acknowledges Machine B's initial sequence Number and its

ACK signal. And then Machine A will start the actual data transfer.

Initial sequence Numbers are randomly selected while initiating connections between two

devices.

3.2 TCP SYN Flood Attack

TCP SYN Flood attack uses the three-way handshake mechanism. At the first of the attack

client A, an attacker, sends a SYN packet to client B. Then client B sends a SYN/ACK

packet to client A. As a normal three-way handshake mechanism client A should send an

ACK packet to client B, however, client A does not send an ACK packet to client B. In this

10

case client B is waiting for an ACK packet from client A. This status of client B is called

“half open”. This kind of incomplete connection is stored in Backlog Queue. After 75

seconds the incomplete connection is removed from Backlog Queue and it is disconnected.

 Fig-3.2: TCP SYN flood attack

However, if client A sends lots of SYN packets before client B removes incomplete

connections from Backlog Queue, then Backlog Queue in client B is overflowed. In this case

client B cannot accept TCP connection at all. This is called Denial-of-Service, and this type

of attack is TCP SYN Flood Attack.

11

3.3 Particle swarm optimization algorithm

Particle swarm optimization is a search algorithm that has been inspired from bird flocking

and fish schooling. This population based algorithm has been designed and introduced by

Kennedy and Eberhart in 1995. The basic PSO has found many successful applications in a

number of problems including standard function optimization problems, solving permutation

problems and training multi-layer neural networks. The PSO algorithm contains a swarm of

particles in which each particle indicates a potential solution. The particles fly through a

multidimensional search space in which the position of each particle is adjusted according to

its own experience and the experience of its neighbors. PSO system combines local search

methods (through self-experience) with global search methods (through neighboring

experience), attempting to balance exploration and exploitation. As in evolutionary

computation paradigms, the concept of fitness is employed and candidate solutions to the

problem are termed particles, each of which adjusts its flying based on the flying experiences

of both itself and its companion. PSO is an approach to problems whose solutions can be

represented as a point in an n-dimensional solution space. A number of particles are

randomly set into motion through this space. At each iteration they observe the fitness of

themselves and their neighbors and emulate successful neighbors (those whose current

position represents a better solution to the problem than theirs) by moving toward them. The

position and velocity of particle i at iteration k can be respectively expressed by notations (1)

and (2).

 () [() () () ()] (1)

 () [() () () ()] (2)

Particle i keeps track of its coordinates in the solution space which are associated with the

best solution that has achieved so far by that particle. This value is called local best Lbesti.

Another best value that is tracked by the PSO is the best value obtained so far by any particle

in the neighborhood of that particle. This value is called global best Gbest. The basic concept

of PSO lies in accelerating each particle toward its local best and the global best locations.

Various schemes for grouping particles into competing, semi-independent flocks can be used,

or all the particles can belong to a single global flock. This extremely simple approach has

been surprisingly effective across a variety of problem domains.

In the basic particle swarm optimization algorithm, particle swarm consists of “n” particles,

and the position of each particle stands for the potential solution in D-dimensional space .the

particles change its condition according to the following three principles :

 (1)To keep its inertia

12

 (2) to change the condition according to its most optimist position

 (3)to change the condition according to the swarm’s most optimist position .

The position of each particle in the swarm is affected both by the most optimist position

during its movement (individual experience) and the position of the most optimist particle in

its surrounding (near experience).when the whole particle swarm is surrounding the particle

,the most optimist position of the surrounding is equal to the one of the whole most optimist

particle ; this algorithm is called the whole PSO. If the narrow surrounding is used in the

algorithm ,this algorithm is called the partial PSO. Each particle can be shown by its current

speed and position ,the most optimist position of each individual and the most optimist

position of the surrounding . In the partial PSO. the speed and position of each individual and

the most optimist position of the surrounding . In the partial PSO.the speed and position of

each particle change according the following equality

The velocity and position of particle i at iteration k + 1 can be calculated according to the

following equations:

 () () (() ()) (() ())
 (3)

 () () () (4)

where w is the inertia weight, c1 and c2 are constants which determine the influence of the

local best position Lbesti(k) and the global best position Gbest(k). Parameters r1 and r2 are

random numbers uniformly distributed within. In compare with other meta-heuristic, PSO

has better search capacity, performance and accuracy. It has absolute advantages in the

continuous variable function optimization problems. The calculation in PSO is very simple

and hence its CPU requirement is quite low. It also is easy to implement and there are few

parameters to adjust. Due to these advantages this paper uses PSO as its optimizer.

3.4 Scope of the problem

SYN flooding attack tries to exhaust the buffer space in order to maximize number of

blocked connections. Hence, the defense scheme logically must try to prevent the system

from allocating buffer space to attack connections and minimize number of lost connections.

In this paper we have implemented the PSO algorithm in order to dynamically calculate very

important parameters: holding time of the packet in the queue and the maximum number of

half open connection that can reside in the queue. The optimized best two position of these

parameters are provided to the server so that it can tune these values to get the best defense

against the SYN flood attack

13

Chapter 4

METHODOLOGY

14

4.1 Framework

Consider a server offering some TCP-based services that is subject to SYN flooding attacks.

As mentioned before, SYN flooding attack uses the 3-way handshaking protocol running in

the TCP connection establishment phase. In a SYN flooding attack, attacker sends a large

number of SYN packets to the server. Each of these packets has to be handled like a

connection request by the server, so the server must answer with a SYN–ACK and must

allocate a memory space to this half-open connection. In other words, attacker tries to

exhaust the memory space allotted to the TCP protocol. By this background, in modeling of

this attack, we consider only one resource i.e. the memory space of the victim server and

since it has limited capacity we consider it as a queuing system. Employing queuing theory,

we give an abstraction for modeling SYN flooding attack. In this model, all connection

requests share a same backlog queue. When a request arrives at the system, receives a buffer

space of the backlog queue upon finding an inactive buffer space and is blocked otherwise.

Assume that in this computer each half open connection is held for at most the period of time

h seconds and at most m concurrent half-open connections are allowed. It is also assumed

that a half-open connection for a regular request packet is held for a chance time which is

exponentially distributed with parameter l. The arrivals of the regular connection request

packets and the attack connection request packets are both Poisson processes with rates

and , respectively. The two arrival processes are independent of each other and of the

holding times for half-open connections.

Obviously, when the system is under SYN flooding attack, number of pending connections

increases and in a point in which there is no more room for new connections to be saved, the

arriving connection requests will be blocked. In the other word, when a server is under SYN

flooding attacks, half-open connections quickly consume all the memory allocated for the

pending connections and prevent the victim from further accepting new requests. It goes

without saying that the time duration at which the system reaches to this saturation point is

affected by the values of m and h. For example, when h becomes larger, attack half open

connections live long duration of time causing to consumption of the connection

opportunities and increased number of blocked connections. In this case, less percentage of

the buffer space is allocated to legal requests, and major part of this space will be occupied

by the attacker requests.

Considering the fact that values of h and m play important roles in SYN flooding attack, this

paper chooses h and m as its control parameters and employs the PSO algorithm to tune them

dynamically toward the best defense position. An abstract model for this defense approach

has been shown in Fig. 5.1. In this figure the TCP-based server has been modeled by a single

queue, in which, the connection requests are queued, waiting for the service. This figure

shows that the system performance is measured continually and then is formulated as an

15

objective function. PSO then uses this objective function to find the best values for h and m

parameters.

Here is the abstract model for the Self-securing Server Running PSO_SYN:

 Fig-4.1: Abstract model for the Self-securing Server Running PSO_SYN.

It is clear that definition of an appropriate objective function is vital. Remember that SYN

flooding attack tries to exhaust the buffer space in order to maximize number of attacking

request. Hence, the defense scheme logically must try to prevent the system from allocating

buffer space to attack connections and minimize number of attacking request.

 In the other words, the defense scheme can be defined as an optimizer that tries to minimize

and Attack Requests Buffer Occupancy Percentage and maximize the Regular Requests

Buffer Occupancy and the remaining occupancy for arrival requests.

OBJECTIVE FUNCTION:

 max

 * Remaining occupancy for arrival request

The connection loss probability, a basic measure for assessing the performance of the system

under DoS attacks. Each arriving connection request packet must be blocked once there have

TCP Based Service Module m

TCP Buffer Space T

Objective Function

Arriving Requests

PSO Algorithm

16

already been m pending connections in the system. Therefore, it can be described as ratio of

the number of dropped requests to the all arrived requests.

The buffer occupancy percentage of attack requests that can be described as mean ratio of the

number of attack half-open connections (those connections that are closed after T seconds) to

all half-open connections.

The regular requests buffer occupancy percentage and is characterized by the mean ratio of

the number of regular half-open connections (those connections that are closed prior to T

seconds) to all half-open connections.

As the next step of our design we need to draw an appropriate mapping between the problem

solutions and PSO particle. We consider the (T, m) parameters of the server as the PSO

particle position. By this mapping, each particle tries to tune its positions i.e. (T, m) seeking

the best performance. Particles’ performance is formulated as the following objective

function that links the optimization algorithm with the design requirements:

4.2 Objective Function

Let,

Regular packet arrival rate =

Attacking packet arrival rate =

So, attack intensity, k =

Let, the maximum number of time for which packets can be held in queue = T second

And maximum number of half open connection = m

So the number of packets in a queue, n=

Number of regular packet in a queue, = *T

Number of attacking packet in a queue, = *T

At the arrival, the capacity of the TCP buffer, m = +

When, the more packet arrives, and increases and we have to increase the size of m

The difference between m and the updated (+) = |(+)-m|

So, the new size of m should be = m +| m - (+)|

As we have to increase the regular request and the size of queue and decrease the attacking

packet, so we have to maximize the objective function where

17

Objective function = (/)*(m+|m - (+)|)

 = (*t/ *t) * (m+|m - (*t/ *t)|)

 = (*t/ * t) * (m+|m - (*t/ * t)|) (5)

Where and is the poisson’s ratio of respectively and .

This objective function reflects the design intention i.e. maximization of arrival request and

the TCP buffer m and at the same time minimization of the attacking packet.

According to the PSO algorithm described in Eqs. (3) and (4), values of T and m will be

updated by the following equations:

 (
) (

) (6)

 (7)

 (
) (

) (8)

 (9)

where (,) is the local best position and (,), is the global best

position. These best positions are selected according to the objective function of (5) and

based on particles’ experiences. The parameters c1 and c2 determine the relative pull of

Lbest and Gbest and the parameters r1 and r2 lead to stochastically varying these pulls. These

parameters should be selected sensitively for efficient performance of PSO_SYN. The

constants c1 and c2 represent the weighting of the stochastic acceleration terms that pull each

particle toward Lbest and Gbest positions. Low values allow particles to roam far from the

target regions before being tugged back. On the other hand, high values result in abrupt

movement toward, or past, target regions. Hence, the acceleration constants are set to be 0.5.

Suitable selection of inertia weight, w, provides a balance between global and local

explorations, thus requiring less iteration on average to find a sufficiently optimal solution.

We set w to be 0.9. These values of the parameters have been selected through a try and error

procedure. Fig. 2 shows more details about operation of the proposed defense scheme.

According to this flowchart, after an initial phase, PSO_SYN enters into an iterative loop in

which three basic operations are performed continually. First, the system performance is

measured and the objective function is computed. Second, local and global best positions are

updated by using the value achieved for the objective function. Third, next position i.e. new

value for (h, m) is computed by using Eqs. (6)–(9).

18

4.3 Flowchart

A flowchart is given bellow:

 Fig. 4.2- PSO_SYN in operation.

19

4.4 Pseudo-code

Here is the pseudo code for PSO algorithm:

1: k ← 1 {initialization}

2: for m = 1 to M do

3: Generate_Solution(xm(k))

4: Initialize_Velocity(vm(0))

5: f(xm(0)_) ← ∞

6: end for

7: {main loop}

8: repeat

9: {evaluate and update best solutions}

10: for m = 1 to M do

11: f(xm(k)) ← Evaluate_quality(xm(k))

12: if f(xm(k)) < f(xm(k − 1)_) then

13: xm(k)_ ← xm(k)

14: else

15: xm(k)_ ← xm(k − 1)_

16: end if

17: if f(xm(k)) < f(x(k)_) then

18: x(k)_ ← xm(k)

19: else

20: x(k)_ ← x(k − 1)_

21: end if

22: end for

23: for m = 1 to M do

24: for n = 1 to N do

25: cmn(k) ← 0

26: for all Km nearest neighbors (index p) of m do

27: cmn(k) ← cmn(k) + (U(0, ϕ)(xpn(k) −xmn(k))

28: end for

29: vmn(k) ← χ ∗ [vmn(k − 1) + 1/Km ∗ cmn(k)]

30: xmn(k + 1) ← xmn(k) + vmn(k)

31: end for

32: end for

33: stop_condition ← Check_stop_condition()

34: k ← k + 1

35: until stop_condition = false

36: return f(x(k)_), x(k)_, k

20

Chapter 5

IMPLEMENTATION AND SIMULATION

21

5.1 Environment

Here we have used Matlab to execute our problem solution. LAB (matrix laboratory) is

a multi-paradigm numerical computing environment and fourth-generation programming

language. A proprietary programming language developed by MathWorks, MATLAB

allows matrix manipulations, plotting of functions and data, implementation of algorithms,

creation of user interfaces, and interfacing with programs written in other languages,

including C, C++, C#, Java, Fortran and Python.

5.2 Parameter Table

We have used several parameters: inertia, maximum time for a data to stay in a queue,

maximum number of half open connection, correction factor etc. Here is the parameter table

below:

 Table-5.1: Table of Parameters

 Parameter Symbol

 Inertia w

 Regular packet

 Attacking packet

Total number of regular

request

Total number of attacking

request

Total capacity in buffer m

 Poisson’s distribution value

for regular request

 r1

Poisson’s distributed value for

attacking request

 r2

Maximum time for a request in

the queue

 T

Attack intensity k

22

5.3 Simulation Setup

Our simulations use the topology in Fig. 3. In this network the victim server continually

receives TCP connection request packets i.e. SYN packets from various sources. Some of

them belong to attackers and others are for legal users.

Let Regular packet arrival rate, =100,20,30

And Attacking packet arrival rate, = 10,20,60 respectively

So, attack intensity, k =

 = 0.1,1 and 2

We used these values to show the change of time for each packet in buffer and the buffer

capacity.

5.4 Simulation Result

In this section PSO_SYN is compared to TCP. As mentioned, while TCP uses static values

of t = and m, PSO_SYN sets t and m dynamically based on attack intensity. For this purpose

four scenarios of simulations are presented. In first scenario attack intensity is considered as

k = 0.1 which means low attack intensity, in second one it is considered as k = 1 which

means medium attack intensity, in third scenario it is set as k = 2 which means high attack

intensityand finally in fourth scenario of our simulations, we consider a variable attack

intensity that fluctuate between 0 and 2.

23

5.4.1 Scenario 1: Increase of t and m in Low attack intensity (k = 0.1)

The figure bellow is for time t in low attack intensity:

 Fig-5.1: Variations of t computed by PSO_SYN in low attack intensity

In the figure the behavior of the system is shown where the victim server goes under a SYN

flooding attack whose intensity is k = 0.1 i.e. low attack intensity. This figure shows the

varying values of the parameter t, which is the holding time of each half open connection in

the parameter. As seen in the figure, the value of parameter t is declining at a steady rate.

24

The figure bellow is for the capacity of buffer, m in low attack intensity:

 Fig-5.2: Variations of m computed by PSO_SYN in low attack intensity

The figure shows the varying values of the parameter p, which is the maximum number of

half open connections allowed in the queue adjusted with PSO algorithm where the attack

intensity is k= 0.1. This figure shows the varying values of the parameter m, which is the the

maximum number of half open connections allowed in the queue. As seen in the figure, the

value of parameter t is at a steady state.

25

5.4.2 Scenario 2: Increase of T and m in Medium attack intensity (k = 1)

The figure bellow is for time t in medium attack intensity:

 Fig-5.3: Variations of T computed by PSO_SYN in medium attack intensity

The figure shows the behavior of the system in medium attack intensity where k= 1. The

figure clearly shows that when the attack intensity increases, the value of t is reduced by the

PSO algorithm in order to defend the SYN attack requests.

26

The figure bellow is for capacity in the buffer space, m in medium attack intensity:

 Fig-5.4: Variations of m computed by PSO_SYN in medium attack intensity

The above figure shows that PSO algorithm increases the value of number of half open

connections in queue, m is increased when the attack intensity increases so that new requests

can be allocated. .

27

5.4.3 Scenario 3: Increase of T and m in High attack intensity (k = 2)

The figure bellow is for time t in High attack intensity:

 Fig-5.5: Variations of T computed by PSO_SYN in high attack intensity

The above figure shows that when the system is under high attack intensity, then the

parameter t is further reduced by the PSO algorithm to eliminate the attack requests from the

queue.

28

The figure bellow is for the capacity of buffer, m in medium attack intensity:

 Fig-5.6: Variations of m computed by PSO_SYN in high attack intensity

Here, the intensity is high. So, the capacity of buffer is increasing in a high rate so that of

buffer is increasing to make more request to arrive.

29

5.4.4 Scenario 4: Increase of T and m in variation attack intensity (k =

0.1,1,2)

The figure bellow is for time t in variable attack intensity.

 Fig-5.7: Variations of T computed by PSO_SYN in variable attack intensity

Here the figure shows how m changes in several attack intensities. We have used 0.1,1 and 2

as the value of attack intensity respectively in low, medium and high attack.

30

The figure bellow is for time t in medium attack intensity.

The figure bellow is for time m in variable attack intensity.

 Fig-5.8: Variations of m computed by PSO_SYN in variable attack intensity

Here the figure shows how m changes in several attack intensities. We have used 0.1,1 and 2

as the value of attack intensity respectively in low, medium and high attack.

31

Chapter 6

 CONCLUSION

32

6.1 CONCLUSION

This paper proposed a novel approach to defend against SYN-flooding DoS attacks. For this

purpose, it formulated the defense problem as an optimization problem, which tries to

minimize the number of attacking requests and to maximize the number of regular request by

maximizing the buffer capacity and minimizing the time for each request to stay in the buffer

queue . Then it used PSO technique to solve this optimization problem. This solution led to a

self-securing server that continually monitors some performance metrics and then tries to

enhance the security degree by dynamically setting of some parameters. Theoretical analysis

show that the proposed solution definitely converges to an optimal point and by an extensive

simulative study in matlab environment it was shown that the proposed defense mechanism

remarkably improves performance of the under-attack server. This research show that t and

m are effective control points to protect the TCP servers against SYN flooding attacks. As

directions for future works the following issues can be examined.

6.2 FUTURE PLAN

As directions for future works the following issues can be examined.

– Can other parameters affect SYN flooding attacks?

– How can we improve our defense performance by modifications over buffer allocation

 strategies of TCP? For example, can we assign buffer space only to full established

 connections and not half-open connections?

– Can other meta-heuristic algorithms such as ant colony optimization and genetic algorithm

be employed to design defense mechanisms against SYN flooding attacks?

–Can a similar approach be employed in the network routers?

33

Chapter 7

 APPENDIX

34

Code for PSO algorithm

%% Initialization
% Parameters
clear
clc
iterations = 30;
inertia = 1.0;
correction_factor = 2.0;
swarm_size = 49;

% ---- initial swarm position -----
index = 1;
for i = 1 : 7
 for j = 1 : 7
 swarm(index, 1, 1) = i;
 swarm(index, 1, 2) = j;
 index = index + 1;
 end
end

swarm(:, 4, 1) =10; % best value so far
swarm(:, 2, :) = 0; % initial velocity

%% Iterations
for iter = 1 : iterations

 %-- evaluating position & quality ---
 for i = 1 : swarm_size
 swarm(i, 1, 1) = swarm(i, 1, 1) + swarm(i, 2, 1)/1.3; %update x position
 swarm(i, 1, 2) = swarm(i, 1, 2) + swarm(i, 2, 2)/1.3; %update y position
 x = swarm(i, 1, 1);
 y = swarm(i, 1, 2);
 lambda1= 10;
 r1= poissrnd(lambda1);

 lambda2= 20; %k=attack_intensity= lanbda2/lambda1=0.1
 r2= poissrnd(lambda2);

 val = ((r1*x)/(r2*x))*(y+abs(y-(r1*x+r2*x))); % objective function;

 if val > swarm(i, 4, 1) % if new position is better
 swarm(i, 3, 1) = swarm(i, 1, 1); % update best x,
 swarm(i, 3, 2) = swarm(i, 1, 2); % best y postions
 swarm(i, 4, 1) = val; % and best value
 end
 end

 [temp, gbest] = min(swarm(:, 4, 1)); % global best position

 %--- updating velocity vectors

35

 for i = 1 : swarm_size
 swarm(i, 2, 1) = rand*inertia*swarm(i, 2, 1) + correction_factor*rand*(swarm(i, 3, 1) - swarm(i, 1, 1)) +

correction_factor*rand*(swarm(gbest, 3, 1) - swarm(i, 1, 1)); %x velocity component
 swarm(i, 2, 2) = rand*inertia*swarm(i, 2, 2) + correction_factor*rand*(swarm(i, 3, 2) - swarm(i, 1, 2)) +

correction_factor*rand*(swarm(gbest, 3, 2) - swarm(i, 1, 2)); %y velocity component

 end

end

Plotting Code in MATLAB

t=[
 3.0957
 3.0942
 3.0939
 3.0932
 3.0922
 3.0912
 3.0902
 3.0901
 3.0891
 3.0881
 3.0873
 3.0867
 3.0858
 3.0845
 3.0842
 3.0797
 3.0761
 3.0753
 3.0744
 3.0699
 3.0682
 3.0671
 3.0656
 3.0638
 3.0622
 3.0615
 3.0609
 3.0607
 3.0599
 3.0595
];

36

iter = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30];
plot(iter, t, 'blue')
hold on;
t = [
 1.0993
 1.0616
 1.0477
 1.0362
 1.0259
 1.0150
 1.0048
 1.0007
 0.9401
 0.8396
 0.7281
 0.6180
 0.5171
 0.4968
 0.3755
 0.2547
 0.1340
 0.1008
 0.0993
 0.0898
 0.0770
 0.0652
 0.0534
 0.0429
 0.0314
 0.0205
 0.0198
 0.0091
 0.0070
 0.0036
];

iter = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30];
plot(iter, t, 'magenta')
hold on;

t = [2.2941
 2.2856
 2.2568
 2.2439
 1.9568
 1.8567
 1.7681
 1.6012
 1.5955
 1.4586
 1.3598
 1.2129
 1.2181
 0.9947

37

 0.9804
 0.7916
 0.7468
 0.6854
 0.6018
 0.5715
 0.5521
 0.4891
 0.4552
 0.4037
 0.3412
 0.1112
 0.0385
 0.0284
 0.0198
 0.0112
]; % my dependent vector of interest

iter = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30];
plot(iter, t, 'r')
hold on;
xlabel ('Iteraions');
ylabel('t');
axis([2 30 -0.5 4]);

legend('k=0.1','k= 1','k= 2');

38

BIBLIOGRAPHY

39

[1]SeungJae Won, “TCP SYN Flood - Denial of Service”, web2.uwindsor.ca/courses/

cs/aggarwal/cs60564/Assignment1/Won.pdf

[2] Deepak Singh Rana, “A Study and Detection of TCP SYN Flood Attacks with IP

spoofing and its Mitigations”

www.ijcta.com/documents/volumes/vol3issue4/ijcta2012030428.pdf

[3] J. Lemon, “Resisting SYN Flooding DoS Attacks with a SYN Cache”, Proceedings of

USENIX BSDCon’2002, February, 2002.

[4] D. J. Bernstein and Eric Schenk, “Linux Kernel SYN Cookies Firewall Project”,

http://www.bronzesoft.org/projects/scfw.

[5] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram and D. Zamboni,

“Analysis of a Denial of Service Attack on TCP”, Proceedings of IEEE Symposium on

Security and Privacy, May 1997.

[6] S. Gavaskar, R. Surendiran and DR. E. Ramaraj , “Three Counter Defense Mechanism

for TCP SYN flooding attack”.

[7] S. M. Bellovin, “ICMP Traceback Messages”, Internet Draft: draftbellovin-itrace-00.txt,

March 2000.

[8] K. Park and H. Lee, “On the Effectiveness of Probabilistic Packet Marking for IP

Traceback under Denial of Service Attack”, Proceedings of IEEE INFOCOM 2001, March

2001.

[9] S. Savage, D. Wetherall, A. Karlin and T. Anderson, “Practical Network Support for IP

Traceback”, Proceedings of ACM SIGCOMM’2000, August 2000.

[10] D. Song and A. Perrig “Advanced and Authenticated Marking Schemes for IP

Traceback”, Proceedings of IEEE INFOCOM’2001, March 2001.

[11] A. C. Snoren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio, S. T. Kent and

W. T. Strayer, “Hash-Based IP Traceback”, Proceedings of ACM SIGCOMM’2001, August

2001.

[12] S. F. Wu, L. Zhang, D. Massey, and A. Mankin, “Intention-driven ICMP traceback”,

Internet Draft: draft-wu-itrace-intention-00.txt, February 2001.

[13] T. Darmohray and R. Oliver, “Hot Spares for DoS attacks”, ;login, 25(7), July 2000.

[14].F. Karray and C. W. de Silva, Soft Computing and Intelligent Systems Design, Addison

Wesley, New York, NY, USA, 2004.

40

[15].A. S. Cherry and R. P. Jones, “Fuzzy logic control of an automotive suspension

system,” IEE Proceedings: Control Theory and Applications, vol. 142, no. 2, pp. 149–160,

1995.

[16].G. Slaski and M. Maciejewski, “Skyhook and fuzzy logic controller of a semi active

vehicle suspension,”Transport, vol. 78, pp. 97–111, 2011.

[17].D. P. Rini, S. M. Shamsuddin, and S. S. Yuhaniz, “Particle swarm optimization:

technique, system and challenges,” International Journal of Computer Applications, vol. 14,

no. 1, pp. 19–26, 2011.

[18].MathWorks, 2012, http://www.mathworks.com/help

