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ABSTRACT 
 

Nowadays it is obvious that speakers can be identified from their voices.  In this work we 

look into the details of speaker identification from the real-time system point of view. 

Firstly, we review the well-known techniques used in speaker identification. We look into 

the details of every step in identification process and explain the ideas, which leaded to 

these techniques. We start from the basic definitions used in DSP, then we move to the 

feature extraction step and review two types of features, namely MFCC and LPCC, and 

finally we review two speaker modeling techniques, VQ and GMM. Secondly, we 

analyze described techniques from the time complexity point of view and propose several 

approaches to their optimization. Finally, we propose a novel approach to the feature 

matching step in the speaker identification and  analyze it theoretically. The main 

objective of this approach is an iterative pruning of speaker models, which are far away 

from the unknown speech sample, during the identification process. Which is greatly 

improves identification speed in feature matching step. 
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Introduction

In this chapter we make a brief introduction into the area of speaker identification 

and shortly describe the main parts of this thesis. Nowadays, speaker identification is 

not anymore just a theory.  Applications based on it are widely used around the word  

and  found their appropriate places in the industry. But even though a lot of work has 

already done in this field, it is still not a solved problem. The research in the area of 

speaker identification still continues and at present there are a few basic techniques 

that have shown their effectiveness in practice and called “classical” by scientists. 

The goal of this work is to make general overview of these techniques and then 

analyze them from the real time system point of view. The main requirement, which 

is set by real-time system, is a fast identification time. Therefore, the main emphasize 

in this work is set on the optimization approaches for identification algorithms. 

In Chapter 1, we study the fundamentals of Biometrics: Voice Recognition

theory and its advantages, disadvantages and also its application in identification.

In Chapter 2, we study the fundamentals of digital signal processing theory used 

in speaker identification.

In Chapter 3, we study the model of biometric characteristics of human speech 

production organs. This model will serve us as a basis for techniques described in the 

next chapters. 

In Chapter 4, we study different methods for the extraction of the speaker 

characteristics from speech signal. 

In Chapter 5, we discuss possible ways for modeling of extracted 

characteristics and methods, used to calculate the dissimilarity value between 

unknown speech sample and the stored speaker models.

In Chapter 6, we analyze the methods described in the two previous chapters and 

discuss some possible optimization approaches. 

In Chapter 6, we provide a novel approach for the optimization problem. 

In Chapter 7, we analyze the principle of speaker pruning and its Complexity.
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In Chapter 8, finally, we finish this work by giving short discussion and 

conclusions.

1.1 Biometrics: Voice Recognition

One of the growing technologies in security systems today is biometrics, using 

what you are as a way to identify yourself as a valid user.  In particular, voice 

recognition is one type of biometric which uses a measurable, physical characteristic, 

or personal behavioral trait to verify and authenticate an individual.  A Biometric 

sample is raw data representing a biometric characteristic of an individual.  In the 

biometric system, it can capture a biometric sample from an end user and then 

compare it against the data contained in its database.  The system then decides how 

well the two match and indicates whether or not an identification or verification 

has been achieved.  

For voice recognition biometrics, it is important to note the difference between 

speech recognition and speaker verification.  The most important difference is that 

speech recognition identifies what you are saying, while speaker verification verifies 

that you are who you are saying.  A speech recognition system is designed to assist 

the speaker in accomplishing what that person wants to do.  If the person is using 

speech recognition to dictate a report, the system is expected to accurately record 

what that person is saying.  For example, if the person is speaking to a typing 

program and says, “Voice recognition is one type of biometric security,” then the 

system is expected to accurately record that phrase.  However, if an application 

needs to know who is speaking, then it must authenticate the person and verify that 

he or she is in fact that person.  

Speaker verification and authentication systems are voice biometrics.  Like other 

biometrics such as fingerprints, face recognition, signature verifications, speaker 

verification systems are used primarily for security or for monitoring.  To perform 

these functions, a speaker verification system will ask the speaker to say one or more 

passwords or to repeat a series of words or numbers.  Speaker verification systems 

cannot tell whether the person has said what the system expects him or her to say.  

In order to do that, they must submit the spoken input to a speech recognition 
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system.  If speech recognition and speaker verification are combined, a voice 

recognition system can be created as seen in figure 1.  

1.1.1 How Does Voice Biometrics Work

Since voices are nearly impossible to recreate, voice biometric systems analyze a 

person’s voice to authenticate the person and see if he or she is in fact that person.

Voice recognition systems operate by digitizing a profile of a person's speech to 

produce a “voice print,” something which is referred to each time that person tries to 

gain access to secure data. This biometric system uses technology which reduces each 

spoken word into smaller segments such as syllables.  Within these smaller 

segments, each part has three or four dominant tones that can be captured in a digital 

form and plotted on a spectrum.  This table of tones then yields the speaker's unique 

voiceprint.  The voiceprint is then stored as a table of numbers, where the presence of 

each dominant frequency in each segment is expressed as a binary number.  Since all 

table entries are either a 1 or 0, each column can be read bottom to top as a long 

binary code.  When a person speaks his or her secret phrase, the code word or words 

are extracted and compared to the stored model for that person.  When a user 

attempts to gain access to protected data, their secret phrase is compared to the 

previously stored voice model and all other voiceprints stored in the database.  If
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the voice matches a ccording to the system’s “error correction” number, then it will 

be determined whether or not the person is authenticated.

1.1.2 Benefits of Voice Recognition Systems

Biometric voice recognition systems add another layer of security for computer 

systems in an age where computer security needs to be high.  Although this 

technology is new, it can still provide a means of security for various purposes.  As 

seen in the figure below, voice recognition is a new form of security, biometrics, 

which should be used in conjunction with previous forms of security mechanisms.

              

This figure displays the new and increasing level of security mechanisms for   

computer technology.

In addition to security, voice biometrics can produce a more efficient and cost 

effective environment.  In one case, a voice recognition system would allow 

companies to spend less money by providing them with employee ID access cards.  

It can also help companies be more productive with their time.  Instead of using 

passwords or PIN numbers which might be forgotten, a voice recognition systems 

reduces technician support (of resending passwords) because they can merely talk 

into the device to be authenticated.  Also, with today’s volatile working market, 

administrators can delete voiceprints of former employees easily and effectively so 

that no time is lost in productivity (Department of Homeland Security Is The Catalyst 
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For The Biometric Industry).  

Through the new innovation of voice recognition technology, it offers network 

administrators new opportunities to enhance user authentication methods, password 

control, and various network security applications.  In a society which relies heavily 

upon computers in order to function, the need to protect sensitive information will 

undoubtedly act as a catalyst to produce more secure biometric devices.

1.1.3 Problems with Voice Recognition Biometrics

Although voice recognition is a highly researched field of computer security, 

there are still some flaws and problems that this type of security encounters.  

According to Joseph P. Campbell, today’s biometric identification systems have error 

rates ranging somewhere between 6% to 29% of the time (Campbell).  

One of the first problems that voice recognition systems encounter is the 

fact that human voices do not necessarily remain the same over one’s lifetime.  

People’s voices may be effected because of stress, colds, or allergies, as well as by 

aging and diseases.  In order to try and fix this problem, the system could update the 

user's speech model with each successful login.  

Another problem that has to be addressed is the uses of microphones.  No two 

microphones perform identically, so the system has to be flexible enough to cope 

with voiceprints of varying quality.  If a person records the voice prints into the 

system’s database using one microphone, then that may effect the voice print if the 

person were to use a different microphone at a different location.  Also, the same 

person will not speak the secret phrase exactly the same each and every time, so there 

must be a compensation rate to accept or deny the user.  

Environmental noise can also contribute to problems of voice recognition 

systems.  Although humans can focus on a particular sound, a computer system must 

take all information or data that it receives.  Computers will then have to try and 

distinguish sounds heard from the microphone, and those from outside environmental 

noises.  Any extra or outside interference can cause the system to not authenticate a 

valid person.  

Other problems that occur in voice recognition systems are poor phone, or 

cellular connections, vocal variations among people, and telephone devices.  With 

cellular phones, the connection may not be the greatest and so static may cause an 
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interference.  Vocal variations can also be a problem because accents are hard to 

distinguish.  Telephone devices can also effect the success of voice biometrics 

because of the voice samples that are converted and transferred from an analog 

format to a digital format for processing.  

1.1.4 Current Applications of Voice Biometrics

Voice biometrics are slowly being incorporated into today’s computer security 

defenses.  As more computer driven applications arise, voice biometrics can be 

applied to them as a means to add another layer of security.  As of now, most current 

applications for voice recognition systems are for physical access entry into a 

building or for private data.  

Aside from gaining access into physical buildings, voice biometrics are 

also being incorporated into a vast assortment of environments.  The first case is the 

penal system where authentication is used for inmates on parole, juvenile inmates, 

and those under house arrest.  Another application that is being used today is 

telecommunications and telephone companies using voice-enables services.  These 

include AOL, Orange, Onstar, Visa International, and AT&T.  Services include voice 

activated dialing, and password security validation and authentication for interactive 

billing (Lernout & Hauspie speech products announces license agreement with 

orange). 

A second application for voice biometrics is M-commerce.  In this system, 

a voice and signal provider created a security architecture safe guarding access to 

handsets by means of voice authentication.  This new system is impressive because it 

can run on a SIM card and requires no additional hardware.  This technology ensures 

that only legitimate users can access a phone by using a locking mechanism.  

Authentication requires the user to speak a phrase or word as the phone is switched 

on, which is compared in real-time with a reference voice print stored inside the 

tamper proof SIM card's memory (Schlumberger Delivers Timely Breakthrough in 

Mobile Security with On-card Voice Authentication for Phone Users).

The law enforcement and government are also using voice recognition in 

their services.  Voice authentication is used in the law enforcement and corrections 

industries for positive confirmation of offenders’ presence in their home.  This 

guarantees the law that the person is following the court’s orders or confinement to 



7

their house.  

Voice verification in telephone banking is slowly growing with customer 

interest because they are willing to try a new means of securing their money.  This 

type of application is becoming more attractive to banks and other financial 

institutions as developers start to implement highly cost effective automated speech 

recognition systems  to handle routine transactions like an ATM machine.  

Another interesting application of voice recognition systems that is already being 

implemented is credit cards.  These credit cards will not work unless it hears its 

owner’s voice.  By requiring users to give a spoken password to authenticate the user, 

it prevents thieves from trying to use a stolen card.  (Gizmodo)  This voice card, or 

“beep card” as it is called, uses a built-in loudspeaker that it uses to “squawk” an 

acoustic ID signal via a computer’s microphone to an online server (Visa to get behind 

Voice authentication).  

              

1.1.5 Voice Recognition on the Rise

Although voice recognition is not the most commonly used biometric in computer 

security today, its applications to the real world are slowly growing.  In fact, there are 

some indications that voice recognition could become one of the most accepted and 

used biometrics in our society.  A recent study conducted by Vocent Solutions, Inc. 

suggested that:  (1)  Telephones are the primary means by which consumers will 

conduct financial transactions and access financial account information; (2)  

Consumers know about the problem of identity theft;  (3)  Consumers feel that PIN 

Numbers and passwords are not secure enough;  (4)  A strong amount of concern 
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exists when communicating confidential information over the telephone;  (5)  As a 

result of these security concerns and fears, consumers would be willing to participate 

in a voice recognition system, and also feel that it could potentially reduce fraud as 

well as identity theft.  (NOTE:  The source of this information is from the Biometric 

Media Weekly, October 6th issue).

                

Voice recognition is on the rise as it has slowly been improving on its accuracy 

rates and meeting users’ needs for applications.  Allied Business Intelligence (ABI) 

projects voice recognition biometrics to increase to $897.8 million in 2003, up from 

$677 million in 2002.  Over the longer term, the speech recognition market is 

forecasted to grow to $5.3 billion by 2008 (Speech Recognition Market To Exceed $5 

Billion by 2008).
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1.2 Speech based identification

The human speech conveys different types of information. The primary type is 

the meaning or words, which speaker tries to pass to the listener. But the other types 

that are also included in the speech are information about language being spoken, 

speaker emotions, gender and identity of the speaker. The goal of automatic speaker 

recognition is to extract, characterize and recognize the information about speaker 

identity.Speaker recognition is usually divided into two different branches, speaker 

verification and speaker identification. Speaker verification task is to verify the 

claimed identity of person from his voice . This process involves only binary 

decision about claimed identity. In speaker identification there is no identity claim 

and the system decides who the speaking person is.

Speaker identification can be further divided into two branches. Open-set 

speaker identification decides to whom of the registered speakers unknown speech 

sample belongs or makes a conclusion that the speech sample is unknown. In this

work, we deal with the closed-set speaker identification,  which is a decision making 

process of who of the registered speakers is most likely the author of the unknown 

speech sample. Depending on the algorithm used for the identification, the task can 

also be divided into text-dependent  and text-independent identification. The 

difference is that in the first case the system knows the text spoken by the person 

while in the second case the system must be able to recognize the speaker from any 

text. 
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The process of speaker identification is divided into two main phases. During the first 

phase, speaker enrollment, speech samples are collected from the speakers, and they are 

used to train their models. The collection of enrolled models is also called a speaker 

database. In the second phase, identification phase, a test sample from an unknown 

speaker is compared against the speaker database. Both phases include the same first step, 

feature extraction, which is used to extract speaker dependent characteristics from speech. 

The main purpose of this step is to reduce the amount of test data while retaining speaker 

discriminative information. Then in the enrollment phase, these features are modeled and 

stored in the speaker database. This process is represented in Figure1.2.
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Feature 
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Speech Features
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Figure 1.2 Enrollment Phase

In the identification step, the extracted features are compared against the models 

stored in the speaker database. Based on these comparisons the final decision about 

speaker identity is made. This process is represented in Figure 1.3.
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Figure 1.3 Identification Phase
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However, these two phases are closely related. For instance, identification algorithm 

usually depends on the modeling algorithm used in the enrollment phase. This thesis mostly 

concentrates on the algorithms in the identification phase and their optimization.

1.3 Applications

Practical applications for automatic speaker identification are obviously various kinds 

of security systems. Human voice can serve as a key for any security objects, and it is not 

so easy in general to lose or forget it. Another important property of speech is that it can 

be transmitted by telephone channel, for example. This provides an ability to automatically 

identify speakers and provide access to security objects by telephone. Nowadays, this 

approach begins to be used for telephone credit card purchases and bank transactions. 

Human voice can also be used to prove identity during access to any physical facilities by 

storing speaker model in a small chip, which can be used as an access tag, and used 

instead of a pin code. Another important application for speaker identification is to monitor 

people by their voices. For instance, it is useful in information retrieval by speaker indexing 

of some recorded debates or news, and then retrieving speech only for interesting speakers. 

It can also be used to monitor criminals in common places by identifying them byvoices.

In fact, all these examples are actually examples of real time systems. For any 

identification system to be useful in practice, the time response, or time spent on the 

identification should be minimized. Growing size of speaker database is also common fact 

for practical systems and can also lead to system optimization.
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Identification Background
In this chapter we discuss theoretical background for speaker identification. We start 

from the digital signal processing theory. Then we move to the anatomy of human voice 

production organs and discuss the basic properties of the human speech production 

mechanism and techniques for its modeling. This model will be used in the next chapter 

when we will discuss techniques for the extraction of the speaker characteristics from the 

speech signal.

2.1 50 Years of Progress in Speech and Speaker 
Recognition Research

Research in automatic speech and speaker recognition has now spanned five decades. 

Although many techniques have been developed, many challenges have yet to be

overcome before we can achieve the ultimate goal of creating machines that can 

communicate naturally with people. Such a machine needs to be able to deliver a 

satisfactory performance under a broad range of operating conditions. A much greater 

understanding of the human speech process is required before automatic speech and 

speaker recognition systems can approach human performance.  

2.1.1 1950s and 1960s

(1) General: The earliest attempts to devise ASR systems were made in 1950s and 

1960s,   when various researchers tried to exploit fundamental ideas of acoustic phonetics. 

Since signal processing and computer technologies were yet very primitive, most of the 

speech recognition systems investigated used spectral resonances during the vowel 

region of each utterance which were extracted from output signals of an analogue filter 

bank and logic circuits.

(2) Early systems: In 1952, at Bell Laboratories, Davis, Biddulph, and Balashek built a 

system for isolated digit recognition for a single speaker, using the formant frequencies 

measured/estimated during vowel regions of each digit. In an independent effort at RCA 

Laboratories in 1956, Olson and Belar tried to recognize 10 distinct syllables of a single 
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speaker, as embodied in 10 monosyllabic words. In 1959, at University College in England, 

Fry and Denes tried to build a phoneme recognizer to recognize four vowels and nine 

consonants. By incorporating statistical information concerning allowable phoneme 

sequences in English, they increased the overall phoneme recognition accuracy for words 

consisting of two or more phonemes. This work marked the first use of statistical syntax 

(at the phoneme level) in automatic speech recognition. In 1959, Forgie and Forgie at MIT

Lincoln Laboratories devised a system which was able to recognize 10 vowels embedded in 

a /b/ - vowel - /t/ format in a speaker-independent manner. In the 1960s, since computers 

were still not fast enough, several special purpose hardware were built. Suzuki and Nakata 

at the Radio Research Lab in Japan built a hardware vowel recognizer. Sakai and Doshita at 

Kyoto University built a hardware phoneme recognizer in 1962, using a hardware speech 

segmenter and a zero crossing analysis of different regions of the input utterance. Nagata 

and his colleagues at NEC Laboratories built a hardware digit recognizer in 1963.

(3) DTW: One of the difficult problems of speech recognition exists in the 

nonuniformity of time scales in speech events. In the 1960s, Martin and his colleagues at 

RCA Laboratories developed a set of elementary time-normalization methods, based on the 

ability to reliably detect speech starts and ends, that significantly reduced the variability of 

the recognition scores. Martin ultimately founded one of the first speech recognition 

companies, Threshold Technology. At about the same time, in the Soviet Union, Vintsyuk 

proposed the use of dynamic programming methods for time aligning a pair of speech 

utterances (generally known as dynamic time warping (DTW)), including algorithms for 

connected word recognition. However, his work was largely unknown in other countries 

until the 1980s. At the same time, in an independent effort in Japan, Sakoe and Chiba at 

NEC Laboratories also started to use a dynamic programming technique to solve the 

nonuniformity problem. Since the late 1970s, dynamic programming in numerous variant 

forms, including the Viterbi algorithm which came from the communication theory 

community, has become an indispensable technique in automatic speech recognition.

(4) Continuous speech recognition: In the late 1960s, Reddy at Carnegie Mellon 
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University conducted a pioneering research in the field of continuous speech recognition 

by dynamic tracking of phonemes.

2.1.2 1970s 

(1) General: In the 1970s, speech recognition research achieved a number of 

significant mile stones. First, the area of isolated word or discrete utterance recognition 

became a viable and usable technology based on fundamental studies in Russia and Japan. 

Velichko and Zagoruyko in Russia advanced the use of pattern-recognition ideas in speech 

recognition. Sakoe and Chiba advanced their techniques of using dynamic programming; 

and Itakura, when he was staying at Bell laboratories, showed how the ideas of linear 

predictive coding (LPC) could be extended to speech recognition systems through the use 

of an appropriate distance measure based on LPC spectral parameters.

(2) IBM Labs: Researchers started studying large vocabulary speech recognition for 

three distinct tasks, namely the New Raleigh language for simple database queries, the laser 

patent text language for transcribing laser patents, and the office correspondence task, 

called Tangora, for dictation of simple memos.

(3) AT&T Bell Labs: Researchers began a series of experiments aimed at making 

speaker-independent speech-recognition systems. To achieve this goal, a wide range of 

sophisticated clustering algorithms were used to determine the number of distinct patterns 

required to represent all variations of different words across a wide user population.

(4) DARPA program: An ambitious speech understanding project was funded by the 

Defense Advanced Research Projects Agency (DARPA), which led to many seminal

systems and technologies. One of the first demonstrations of speech understanding was 

achieved by CMU in 1973. Their Hearsay I system was able to use semantic information 

to significantly reduce the number of alternatives considered by the recognizer. CMU’s 

Harpy system was shown to be able to recognize speech using a vocabulary of 1,011 

words with reasonable accuracy. One particular contribution from the Harpy system was 

the concept of graph search, where the speech recognition language is represented as a 

connected network derived from lexical representations of words,with syntactical 
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production rules and wordboundary rules. The Harpy system was the first to take advantage 

of a finite state network (FSN) to reduce computation and efficiently determine the closest 

matching string.

Other systems developed under the DARPA’s speech understanding program included 

CMU’S Hearsay II and BBN’S HWIM (Hear What I Mean) systems. The approach 

proposed by Hearsay II of using parallel asynchronous processes that simulate the 

component knowledge sources in a speech system was a pioneering concept. A global 

“blackboard” was used to integrate knowledge from parallel sources to produce the next 

level of hypothesis.

2.1.3 1980s

(1) General: The problem of creating a robust system capable of recognizing a fluently 

spoken string of connected word (e.g., digits) was a focus of research in the 1980s. A wide 

variety of the algorithms based on matching a concatenated pattern of individual words 

were formulated and implemented, including the two-level dynamic programming 

approach by Sakoe at NEC, the one-pass method by Bridleand Brown at Joint Speech 

Research Unit (JSRU) in UK, the level-building approach by Myers and Rabiner at Bell 

Labs, and the frame-synchronous level-building approach by Lee and Rabiner at Bell Labs. 

Each of these “optimal” matching procedures had its own implementation advantages.

(2) Statistical modeling: Speech recognition research in the 1980s was characterized 

by a shift in methodology from the more intuitive template based approach (a 

straightforward pattern recognition paradigm) towards a more rigorous statistical modeling 

framework. Today, most practical speech recognition systems are based on the statistical 

framework developed in the 1980s and their results, with significant additional 

improvements having been made in the 1990s.

(3) HMM: One of the key technologies developed in the 1980s is the hidden Markov 

model (HMM) approach. It is a doubly stochastic process in that it has an underlying 

stochastic process that is not observable (hence the term hidden), but can be observed 

through another stochastic process that produces a sequence of observations. Although the 
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HMM was well known and understood in a few laboratories (primarily IBM, Institute for 

Defense Analysis (IDA)and Dragon Systems), it was not until widespreadpublication of the 

methods and theory of HMMs in the mid-1980s that the technique became widely applied 

in virtually every speech recognition research laboratory in the world.

(4) cepstrum: Furui proposed to use the combination of instantaneous cepstral 

coefficients and their first and second-order polynomial coefficients, now called and 

cepstral coefficients, as fundamental spectral features for speech recognition. He proposed 

this method for speaker recognition in the late 1970s, but no one attempted to apply it to 

speech recognition for many years. This method is now widely used in almost all speech 

recognition systems.

(5) N-gram: A primary focus of IBM was the development of a structure of a 

language model (grammar), which was represented by statistical syntactical rules 

describing how likely, in a probabilistic sense, was a sequence of language symbols (e. g., 

phonemes or words) that could appear in the speech signal. The n-gram model, which 

defined the probability of occurrence of an ordered sequence of n words, was introduced, 

and, since then, the use of n-gram language models, and its variants, has become 

indispensable in large-vocabulary speech recognition systems.

(6) Neural net: In the 1980s, the idea of applying neural networks to speech recognition 

was reintroduced. Neural networks were first introduced in the 1950s, but they did not 

prove useful because of practical problems. In the 1980s, a deeper understanding of the 

strengths and limitations of the technology was achieved, as well as an understanding of the 

relationship of this technology to classical pattern of classification methods.

(7) DARPA program: The DARPA community conducted research on large-

vocabulary, continuous speech recognition systems, aiming at achieving high word 

accuracy for a 1000-word database management task. Major research contributions

resulted from efforts at CMU with the SPHINX system, BBN with the BYBLOS system, 

SRI with the DECIPHER system, Lincoln Labs, MIT and AT&T Bell Labs. The SPHYNX 

system successfully integrated the statistical method of HMM with the network search 
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strength of the earlier Harpy system. Hence, it was able to train and embed 

contextdependent phone models in a sophisticated lexical decoding network.

2.1.4 1990s

(1) General: In the 1990s, a number of innovations took place in the field of pattern 

recognition. The problem of pattern recognition, which traditionally followed the 

framework of Bayes and required estimation of distributions for the data, was transformed 

into an optimization problem involving minimization of the empirical recognition error. 

This fundamental paradigmatic change was caused by the recognition of the fact that the 

distribution functions for the speech signal could not be accurately chosen or defined, and 

that Bayes’ decision theory becomes inapplicable under these circumstances. 

Fundamentally, the objective of a recognizer design should be to achieve the least 

recognition error rather than provide the best fitting of a distribution function to the given 

(known) data set as advocated by the Bayes criterion. This error minimization concept 

produced a number of techniques, such as discriminative training and kernel-based 

methods. As an example of discriminative training, the Minimum Classification Error 

(MCE) criterion was proposed along with a corresponding Generalized Probabilistic 

Descent (GPD) training algorithm to minimize an objective function which acts to 

approximate the error rate closely. Another example was the Maximum Mutual Information 

(MMI) criterion. In MMI training, the mutual information between the acoustic observation

and its correct lexical symbol averaged over a training set is maximized. Although this 

criterion is not based on a direct minimization of the classification error rate and is quite 

different from the MCE based approach, it is well founded in information theory and 

possesses good theoretical properties. Both the MMI and MCE can lead to speech 

recognition performance superior to the maximum likelihood based approach.

(2) DARPA program: The DARPA program continued into the 1990s, with emphasis 

shifting to natural language front ends to the recognizer. The central focus also shifted to 
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the task of retrieving air travel information, the Air Travel Information Service (ATIS) task. 

Later the emphasis was expanded to a range of different speech-understanding applications 

areas, in conjunction with a new focus ontranscription of broadcast news (BN) and 

conversationalspeech. The Switchboard task is among themost challenging ones proposed 

by DARPA; in this task speech is conversational and spontaneous, with many instances of 

so-called disfluencies such as partialwords, hesitation and repairs. The BN transcription 

technology was integrated with information extraction and retrieval technology, and many 

application systems, such as automatic voice document indexing and retrieval systems, 

were developed. A number of human language technology projects funded by DARPA in 

the 1980s and 1990s further accelerated the progress, as evidenced by many papers 

published in The Proceedings of the DARPA Speech and Natural Language/Human 

Language Workshop

(3) Robust speech recognition: Various techniques were investigated to increase the 

robustness of speech recognition systems against the mismatch between training and testing 

conditions, caused by background noises, voice individuality, microphones, transmission 

channels, room reverberation, etc. Major techniques include the maximum likelihood linear 

regression (MLLR), the model decomposition, parallel model composition (PMC), and the 

structural maximum a posteriori (SMAP) method.

(4) Applications: Speech recognition technology was increasingly used within 

telephone networks to automate as well as enhance operator services.

(1) DARPA program: The Effective Affordable Reusable Speech-to-Text (EARS) 

program was conducted to develop speech-to-text (automatic transcription) technology with 

the aim of achieving substantially richer and much more accurate output than before. The 

tasks include detection of sentenceboundaries, fillers, and disfluencies. The program was 

focusing on natural, unconstrained human speech from broadcasts and foreign 

conversational speech in multiple languages. The goal was to make it possible for
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machines to do a much better job of detecting, extracting, summarizing, and translating 

important information, thus enabling humans to understand what was said by reading 

transcriptions instead of listening to audio signals.

(2) Spontaneous speech recognition: Although read speech and similar types of 

speech, e.g. news broadcasts reading a text, can be recognized with accuracy higher than 

95% using state-of-the-art speech recognition technology, recognition accuracy drastically 

decreases for spontaneous speech. Broadening the application of speech recognition 

depends crucially on raising recognition performance for spontaneous speech. In order to 

increase recognition performance for spontaneous speech, several projects have been 

conducted. In Japan, a 5-year national project “Spontaneous Speech: Corpus and 

Processing Technology” was conducted. A world-largest spontaneous speech corpus, 

“Corpus of Spontaneous Japanese (CSJ)” consisting of approximately 7 million of words, 

corresponding to 700 hours of speech, was built, and various new techniques were 

investigated. These new techniques include flexible acoustic modeling, sentence boundary 

detection, pronunciation modeling, acoustic as well as language model adaptation, and

automatic speech summarization.

(3) Robust speech recognition: To further increase the robustness of speech 

recognition systems, especially for spontaneous speech, utterance verification and 

confidence measures are being intensively investigated. In order to have intelligent or 

human like interactions in dialogue applications, it is important to attach to each recognized 

event a number that indicates how confidently the ASR system can accept the recognized

events. The confidence measure serves as a reference guide for a dialogue system to 

provide an appropriate response to its users. To detect semantically significant parts and 

reject irrelevant portions in spontaneous utterances, a detection based approach has recently 

been investigated. This combined recognition and verification strategy works well 

especially for ill-formed utterances. In order to build acoustic models more sophisticated 

than conventional HMMs, the dynamic Bayesian network has recently been investigated.
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(4) Multimodal speech recognition: Humans use multimodal communication when they 

speak to each other. Studies in speech intelligibility have shown that having both visual and 

audio information increases the rate of successful transfer of information, especially when

the message is complex or when communication takes place in a noisy environment. The 

use of the visual face information, particularlylip information, in speech recognition has 

been investigated,and results show that using both types of informationgives better 

recognition performances than using only the audio or only the visual information, 

particularly in noisy environment.

2.2  DSP Fundamentals

According to its abbreviation, Digital Signal Processing (DSP) is a part of computer 

science, which operates with special kind of data – signals. In most cases, these signals are 

obtained from various sensors, such as microphone or camera. DSP is the mathematics, 

mixed with the algorithms and special techniques used to manipulate with these signals, 

converted to the digital form.

2.2.1 Basic Definitions

By signal we mean here a relation of how one parameter is related to another 

parameter. One of  these parameters is called independent parameter (usually it is time), and 

the other one is called dependent, and represents what we are measuring. Since both of 

these parameters belong to the continuous range of values, we call such signal continuous 

signal. When continuous signal is passed through an Analog-To-Digital converter (ADC) it 

is said to be discrete or digitized signal. Conversion works in the following way: every time 

period, which occurs with frequency called sampling frequency, signal value is taken and  

quantized, by selecting an  appropriate  value from  the  range of possible values. This 

range is called quantization precision, and usually represented as an amount of bits 

available to store signal value. Based on the sampling theorem, proved by Nyquist in 1940, 

digital signal can contain frequency components only up to one half of the sampling rate. 

Generally, continuous signals are what we have in nature while discrete signals exist mostly 
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inside computers. Signals that use time as the independent parameter are said to be in the 

time domain, while signals that use frequency as the independent parameter are said to be in 

the frequency domain.

One of the important definitions used in DSP is the definition of linear system. By 

system we mean here any process that produces output signal in a response on a given input 

signal. A system is called linear if it satisfies the following three properties: homogeneity, 

additivity and shift invariance. Homogeneity of a system means that change in the input 

signal amplitude corresponds to the change in the output signal. Additivity means that the 

output of the sum of two signals results in the sum of the two corresponding outputs. And 

finally, shift invariance means that any shift in the input signal will result in the same shift 

in the output signal.

2.2.2 Convolution

An impulse is a signal composed of all zeros except one non-zero point. Every signal 

can be decomposed into a group of impulses, each of them then passed through a linear 

system and the resulting output components are synthesized or added together. The 

resulting signal is exactly the same as obtained by passing the original signal through the 

system.

Every impulse can be represented as a shifted and scaled delta function, which is a 

normalized impulse, that is, sample number zero has a value of one and all other samples 

have a value of zero. When the delta function is passed through a linear system, its output is 

called impulse response. If two systems are different they will have different impulse 

responses. According to the properties of linear systems every impulse passed through it 

will result in the scaled and shifted impulse response and scaling and shifting of the input 

are identical to the scaling and shifting of the output. It means that knowing systems 

impulse response.

Convolution is a formal mathematical operation, which is used to describe relationship 

between three signals of interest: input and output signals, and  the impulse response of the 

system. It is usually said that the output signal is the input signal convolved with the 
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system’s impulse response. Mathematical equation of convolution for discrete signals is 

represented in the following (convolution is denoted as a star):

where y[i] is the output discrete signal, x[i] is the input discrete signal and h[i] is M 

samples long system’s impulse response flipped left-for-right. Index i  goes through the size 

of the output signal. Mathematics behind the  convolution does not restrict how long the 

impulse response is. It only says that the size of the output signal is the size of the input 

signal plus the size of the impulse response minus one.

Convolution is very important concept in DSP. Based on the properties of linear 

systems it provides the way of combining two signals to form a third signal. A lot of 

mathematics behind the DSP is based on the convolution.

2.2.3 Discrete Fourier Transform

Fourier transform belongs to the family of linear transforms widely used in DSP based 

on decomposing signal into sinusoids (sine and cosine waves). Usually in DSP we use the 

Discrete Fourier Transform (DFT), a special kind of Fourier transform used to deal with

aperiodic discrete signals. Actually there are  an  infinite  number of  ways  how  signal  can  

be  decomposed  but sinusoids are selected because of their sinusoidal fidelity that means 

that sinusoidal input to the linear system will produce sinusoidal output, only the amplitude 

and phase may change, frequency and shape remain the  same.

Discrete Fourier Transform changes an N point input signal into two N/2+1 point 

output signals. The output signals represent the amplitudes of the sine and cosine 

components scaled in a special way that is represented by the equations:

C? [i] = cos(2 • k • i •? )/ N )

Sk [i] = sin(2 • k • i •? / N )(2.2)
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where Ck are N/2+1 cosine functions and Sk are N/2+1 sine functions, index k runs 

from zero to N/2. These functions are called basis functions. Actually zero samples in 

resulting signals are amplitudes for zero frequency waves, first samples for waves which 

make one complete cycle in N points, second for waves which make two cycles and so on. 

Signal represented in such a way is called to be in frequency domain and obtained 

coefficients are called spectral coefficients or spectrum. Frequency domain contains exactly 

the same information as the time domain and every discrete signal can be moved back to 

the time domain, using operation called Inverse Discrete Fourier Transform (IDFT). 

Because of this fact, the DFT is also called Forward DFT. Schematically DFT is 

represented in Figure 2.1.
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The amplitudes for cosine waves are also called real part (denoted as Re[k]) and for sine 

waves are called imaginary part (denoted as Im[k]). This representation of frequency 

domain is called rectangular notation. Alternatively, the frequency domain can be expressed 

in the polar notation. In this form, real and imaginary parts are replaced by magnitudes 

(denoted as Mag[k]) and phases (denoted as Phase[k]) respectively. The equations for 

conversion from rectangular notation to the polar notation are as follows:
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There are two main reasons why DFT became so popular in DSP. First is Fast Fourier 

Transform (FFT) algorithm, developed by Cooley and Tukey in 1965, which opened a new 

era in DSP because of the efficiency of the FFT algorithm. The second reason is the 

convolution theorem, which states that convolution in time domain is a multiplication in 

frequency domain and

vice versa. This makes possible to use high-speed convolution algorithm, which convolves 

two signals by passing them through the Fast Fourier Transform, multiplying and using 

Inverse Fourier Transform computing convolved signal.

    2.2.4 Filters

By filter we mean here a method to manipulate with signals defined as a linear system. 

There are two main uses for filters: signal separation and signal restoration. Signal 

separation is needed when the signal was interfered with the other not useful signals or 

noise. Signal restoration is needed when the signal was distorted for example due to the 

transform through a long wire or bad quality recording. There are two main types of filters: 

analog and digital. Analog filters are cheap and have a large dynamic range in frequency 

and amplitude. However, digital filters can achieve thousands better performance.

Easiest way to implement a digital filter is to convolve the input signal with the filters 

impulse response. Based on the length of its impulse responses, filters are usually divided 

into Infinite Impulse Response (IIR) filters and Finite Impulse Response (FIR) filters. There 

are also few types of responses: step response and frequency response. Each of these 
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responses can be used to completely define filter. Step response is the output signal of the 

filter when input is a step function, which is defined as a transition from one level of signal 

to another. This type of responses can be used to define filters, which are able to divide 

signal into regions with similar characteristics. The frequency response can be found by 

taking discrete Fourier transform of the impulse response. It can be useful to define filters, 

which are able to block undesirable frequencies in input signals or separate one band of 

frequencies from another, such as high-pass, band-pass and band-reject filters.

Digital filter theory is important in speaker identification, since it allows by  a given signal 

to analyze origin of it or in this case the unknown speaker.  There are also few minor uses 

for filters like a noise removal or other types of filtering to achieve better results in signal 

analyzing.
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Human Speech Production Model 

     Undoubtedly, ability to speak is the most important way for humans to communicate 

between each other. Speech conveys various kind of information, which are essentially the 

meaning of information speaking person wants to impart, individual information 

representing speaker and also some emotional filling. Speech production begins with the 

initial formalization of the idea which speaker wants to impart to the listener. Then speaker 

converts this idea into the appropriate order of words and phrases according to the language. 

Finally, his brain produces motor nerve commands, which move the vocal organs in an 

appropriate way. Understanding of how human produce sounds forms the basis of speaker 

identification.

3.1 Anatomy 

The sound is an acoustic pressure formed of compressions and rare factions of air molecules 

that originate from movements of human anatomical structures. Most important components 

of the human speech production system are the lungs (source of air during speech), trachea 

(windpipe), larynx or its most important part vocal cords (organ of voice production), nasal 

cavity (nose), soft palate or velum (allows passage of air through the nasal cavity), hard 

palate (enables consonant articulation), tongue, teeth and lips. All these components, called 

articulators by speech scientists, move to different positions to produce various sounds. 

Based on their production, speech sounds can also be divided into consonants and voiced 

and unvoiced vowels.

From the technical point of view, it is more useful to think about speech production system 

in terms of acoustic filtering operations that affect the air going from the lungs. There are 

three main cavities that comprise the main acoustic filter. According to they are nasal, oral 

and pharyngeal cavities. The articulators are responsible for changing the properties of the 

system and form its output. Combination of these cavities and articulators is called 
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vocaltract. Its simplified acoustic model is represented in Figure 2.2.

Speech production can be divided into three stages: first stage is the sound source 

production, second stage is the articulation by vocal tract, and the third stage is sound 

radiation or propagation from the lips and/or nostrils. A voiced sound is generated by 

vibratory motion of the vocal cords powered by the airflow generated by expiration. The 

frequency of oscillation of vocal cords is called the fundamental frequency. Another type of 
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sounds - unvoiced sound is produced by turbulent airflow passing through a narrow 

constriction in the vocal tract.

In a speaker recognition task, we are interested in the physical properties of human vocal 

tract. In general it is assumed that vocal tract carries most of the speaker related 

information. However, all parts of human vocal tract described above can serve as speaker 

dependent characteristics. Starting from the size and power of lungs, length and flexibility 

of trachea and ending by the size, shape and other physical characteristics of tongue, teeth 

and lips. Such characteristics are called physical distinguishing factors. Another aspect of 

speech production that could be useful in discriminating between speakers are called 

learned factors, which include speaking rate, dialect, and prosodic effects.

3.2 Vocal Model 

In order to develop an automatic speaker identification system, we should construct 

reasonable model of human speech production system. Having such a model, we can extract 

its properties from the signal and, using them, we can decide whether or not two signals 

belong to the same model and as a result to the same speaker.

Modeling process is usually divided into two parts: the excitation (or source) modeling and 

the vocal tract modeling. This approach is based on the assumption of independence of the 

source and the vocal tract models. Let us look first at the continuous-time vocal tract model 

called multitube lossless model, which is based on the fact that production of speech is 

characterized by changing the vocal tract shape. Because the formalization of such a time-

varying vocal-tract shape model is quite complex, in practice it is simplified to the series of 

concatenated lossless acoustic tubes with varying cross-sectional areas, as shown in Figure 

2.3.

This model consists of a sequence of tubes with cross-sectional areas Ak and lengths Lk. In 

practice the lengths of tubes assumed to be equal. If a large amount of short tubes is used, 

then we can approach to the continuously varying cross-sectional area, but at the cost of  
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more complex  model. Tract model serves as a transition to the more general discrete-time 

model, also known as source-filter model, which is shown in Figure 2.4.

In this model, the voice source is either a periodic pulse stream or uncorrelated white noise, 

or a combination of these. This assumption is based on the evidence from human anatomy 

that all types of sounds, which can be produced by humans, are divided into three general 

categories: voiced, unvoiced and combination of these two. Voiced signals can be  modeled 

as a basic or fundamental frequency signal filtered by the vocal tract and unvoiced as a 

white noise also filtered by the vocal tract. Here E(z) represents the excitation function, 

H(z) represents the transfer function, and s(n) is the output of the whole speech production 

system. Finally, we can think about vocal tract as a digital filter, which affects source signal 

and about produced sound output as a filter output. Then based on the digital filter theory 

we can extract the parameters of the system from its output.
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The issues described in this chapter serve as a basis for developing speaker identification 

techniques described in the next chapter.

3.3 Uniqueness of each voice
There are 3 main characteristics of sound: frequency, amplitude, and waveform. In human terms: 
pitch, volume and timbre.

Two girls can be singing the same note (pitch) at exactly the same loudness (amplitude) and still 
you can tell the difference between both voices. That's because of their personal timbre.

The timbre builds up from many factors, among them the most important are: The vocal folds or 
cords and the resonators. I`ll try to explain them in simple terms.

The vocal cords are a couple of opposing folds in the larynx that vibrate in the same way as 
when you force air through tight lips. The cords can be longer or shorter, and thinner or thicker. 
As air passes through the stretched cords they vibrate in a particular way according to their 
physical characteristics and that germinal sound changes according to the shape of the vocal 
tract. That is the prime matter of human voice.
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Now, as the marble become a sculpture by changing its shape, the cords vibration  must be 
shaped to form the voice. That shaping comes mainly from the voice resonators.

Resonators are the air filled cavities present in the head and the face. The larynx itself, the 
pharynx, the oral cavity, the nasal cavity, and the sinuses are the main resonators but also the 
chest, with the lungs and bronchi work in order to form the human voice.

The sum of the cords vibration and the resonators shaping develops a unique set of vocal 
formants. This formants are the particular frequencies added or subtracted from the original 
vibration which are finally responsible of the uniqueness of each voice. In order for voice 
recognition to work, the biometric system must be able to distinguish between various people’s 
voices.  Since human voices produce a simultaneous series of harmonics, each sound can be 
attributed to a different person.  

One of the key components that voice recognition uses in order to authenticate a person is by 
using the person’s frequency and intensity.  A person’s frequency is the speed at which air 
particles vibrate.  Since humans can only produce and hear frequencies from 60 to 16,000 cps, a 
voice recognition system can use this scale to help verify users.  Another technique used for 
recognition is by recording a person’s intensity, or the amount of energy in a sound wave.  Since 
the variation in intensity does not affect the frequency, then two sound waves can never be 
recreated even if it is by the same person.  

Yet another reason why every person’s voice is unique is because we have different 
resonators and articulators.  Resonators refer to our body’s nasal, oral, and pharyngeal passages 
whereas articulators refer to such things as our lips, teeth, tongue, and jaw muscles.  In order to 
develop our speech when we were born, we had to train our resonators and articulators in such a 
way that when we speak, our brain process’ that request automatically.  Thus, there is no real 
such thing as spontaneous speech because everything is controlled by our brains.  Voice 
recognition systems use this to its advantage because a person will not be able to duplicate 
another person’s voice.  Even if someone tried to disguise their voice, the brain would control 
their resonators and articulators, or their speech habit so that the sound cannot be mimicked.  

3.4  Pitch
    The human voice is a magical tool. It can be used to identify those we know and love; to 
create wonderful music through singing; it allows people to communicate verbally; and, it can 
help in the recognition of emotions. Everyone has a distinct voice, different from all others; 
almost like a fingerprint, one's voice is unique and can act as an identifier. 
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    The human voice is composed of a multitude of different components, making each voice 
different; namely, pitch, tone, and rate. The following article, the first of a three part series on the 
voice, will discuss the pitch component of the voice. It will explore what voice pitch is, how it is 
used and how it can be influential. The human voice has many components and is created 
through a myriad of muscle movements. Pitch is an integral part of the human voice. 

   The pitch of the voice is defined as the "rate of vibration of the vocal folds" The sound of the 
voice changes as the rate of vibrations varies. As the number of vibrations per second increases, 
so does the pitch, meaning the voice would sound higher. Faster rates form higher voices, or 
higher pitches, while slower rates elicit deeper voices, or lower pitches. How are these vibrations 
and pitches created? The vibrations, and the speed at which they vibrate, are dependent on the 
length and thickness of the vocal cords, as well as the tightening and relaxation of the muscles 
surrounding them. This explains why women generally have higher voices than men do; women 
tend to have higher voices because they have shorter vocal cords. The length and thickness of the 
vocal cords, however, are not the only factors that affect one's pitch. The pitch of someone's 
voice can also be affected by emotions, moods and inflection. Interestingly, our emotions can 
also affect the pitch of our voices. 

    When people become frightened or excited, the muscles around the voice box (or larynx) 
unconsciously contract, putting strain on the vocal cords, making the pitch higher. Again, not all 
pitch change is done unconsciously. A change in pitch is known as inflection and humans 
exercise this naturally all the time. People tend to exercise conscious control of the pitch of their 
voice when refraining from screaming, because it tightens and strains the vocal cords, or 
changing the pitch of our voice to mimic someone, for instance. The voice tends to change, 
sliding up and down the pitch scale, as we express different emotions, thoughts and feelings. 
Pitch is not solely an objective component of voice; research has shown that pitch is associated 
with attractiveness amongst men and women. 

    Studies done by Collins & Missing and Feinberg discovered that men deemed women with 
higher pitched voices more attractive. This may be because higher pitched voices are associated 
with youth and fertility in women. Women, on the other hand, tend to find men with lower 
pitched voices sexy and desirable. 

   A study done by Putz found that women associated low-pitched men's voices with 
uncommitted sex, making these men sexually preferred. Putz also discovered that women's 
desire for men with lower pitched voices increased with fertility over the ovulatory cycle. These 
findings may be shocking to many as so often it is men that are deemed those who are searching 
for uncommitted sex while women are searching for a man offering fertility and stability. 
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    Similar to the aforementioned studies, researchers from Harvard University, Florida State 
University and McMaster discovered that pitch predicted reproductive success of males amongst 
hunter-gatherers. These researchers, studying the reproductive patterns of the Hadza, a tribe in 
Tanzania, found that men with lower pitched voices tended to have more children. This could be 
because the Hazda women chose men with lower pitched voices because they believed them to 
be better providers. In addition, studies have shown that low pitch voices are associated with 
higher levels of testosterone, so women may have chosen these men because they perceived 
them to be better hunters.

    It seems voice pitch, an arbitrary characteristic, can certainly have important impacts on 
human sexual preference and mating, as well as what we find attractive in the opposite sex. The 
pitch of our voices is created through vibrations of the vocal folds. The rate at which these folds 
vibrate changes the way our voices sound, with faster rates equating higher pitches. Studies have 
shown that women tend to prefer men with lower pitched voices and find these men more 
attractive. Furthermore, it has been discovered that men with lower pitched voices seem to have 
more children, perhaps owing to the fact that more women are attracted to them or that these men 
are viewed as stronger. The pitch of one's voice can help in unconsciously divulging the feelings 
and emotions, but can also be consciously manipulated so as not to put strain on the vocal cords 
or to create a certain sound. The voice and the way it is used are unique to every individual.
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Feature Extraction

In this chapter we discuss the possible ways of extracting speaker discriminative 

characteristics from speech signal.

4.1 Introduction

The acoustic speech signal contains different kind of information about speaker. This 

includes “high-level” properties such as dialect, context, speaking style, emotional state of 

speaker and many others. A great amount of work has been already done in trying to 

develop identification algorithms based on the methods used by humans to identify speaker. 

But these efforts are mostly impractical because of their complexity and difficulty in 

measuring the speaker discriminative properties used by humans. More useful approach is 

based on the “low-level” properties of the speech signal such as pitch (fundamental 

frequency of the vocal cord vibrations), intensity, formant frequencies and their 

bandwidths, spectral correlations, short-time spectrum and others.

From the automatic speaker recognition task point of view, it is useful to think about 

speech signal as a sequence of features that characterize both the speaker as well as the 

speech. It is an important step in recognition process to extract sufficient information for 

good discrimination in a form and size which is amenable for effective modeling. The 

amount of data, generated during the speech production, is quite large while the essential 

characteristics of the speech process change relatively slowly and therefore, they require 

less data. According to these matters feature extraction is a process of reducing data while 

retaining speaker discriminative information.
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Based on the issues described above, we can define requirements that should be taken 

into account during selection of the appropriate speech signal characteristics or features:

• discriminate between speakers while being tolerant of intra-speaker variability,

• easy to measure,

• stable over time,

• occur naturally and frequently in speech,

• change little from one speaking environment to another,

• not be susceptible to mimicry.

Of course, practically, it is not possible to meet all of these criteria and there will be 

always a trade-off between them, based on what is more important in the particular case.

The speech wave is usually analyzed based on spectral features. There are two reasons 

for it. First is that the speech wave is reproducible by summing the sinusoidal waves with 

slowly changing amplitudes and phases. Second is that the critical features for perceiving 

speech by humans ear are mainly included in the magnitude information and the phase 

information is not usually playing a key role.

4.2 Short-Term Analysis

Because of its nature, the speech signal is a slowly varying signal or quasi-stationary. 

It means that when speech is examined over a sufficiently short period of time (20-30 

milliseconds) it has quite stable acoustic characteristics. It leads to the useful concept of 

describing human speech signal, called “short-term analysis”, where only a portion of the 

signal is used to extract signal features at one time. It works in the following way: 

predefined length window (usually 20-30 milliseconds) is moved along the signal with   an

overlapping (usually 30-50% of the window length) between the adjacent frames. 

Overlapping is needed to avoid losing of information. Parts of the signal formed in such a 

way are called frames. In order to prevent an abrupt change at the end points of the frame, it 
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is usually multiplied by a window function. The operation of dividing signal into short 

intervals is called windowing and such segments are called windowed frames (or sometime 

just frames). There are several window functions used in speaker recognition area, but the 

most popular is Hamming window function, which is described by the following equation:

where N is the size of the window or frame. A set of features extracted from 

one frame is called feature vector. Overall overview of the short-term analysis

approach is represented in Figure 3.1.

In the next subchapters we describe a few features, commonly used in speaker 

recognition.
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Figure 4.2 Short-Term Analysis

4.3 Cepstrum

     According to the issues the speech signal s(n) can be represented as a “quickly varying” 

source signal e(n) convolved with the “slowly varying” impulse response h(n) of the vocal tract 

represented as a linear filter. We have access only to the output (speech signal) and it is often 

desirable to eliminate one of the components. Separation of the source and the filter parameters 

from the mixed output is in general difficult problem when these components are combined 

using not linear operation, but there are various techniques appropriate for components 

combined linearly. The cepstrum is representation of the signal where these two components 

are resolved into two additive parts. It is computed by taking the inverse DFT of the logarithm 

of the magnitude spectrum of the frame. This is represented in the following equation:
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Some explanation of the algorithm is therefore needed. By moving to the frequency domain we 

are changing from the convolution to the multiplication. Then by taking logarithm we are 

moving from the multiplication to the addition. That is desired division into additive 

components. Then we can apply linear operator inverse DFT, knowing that the transform will 

operate individually on these two parts and knowing what Fourier transform will do with 

quickly varying and slowly varying parts. Namely it will put them into different, hopefully 

separate parts in new, also called quefrency axis. Let us look at the speech magnitude spectrum 

in Figure 4.3.

                                 Figure 4.3 Speech magnitude spectrum

From this figure we can see that two components are clearly distinctive now.
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4.4  Mel-Frequency Cepstrum Coefficients

     Mel-frequency cepstrum coefficients (MFCC) are well known features  used to describe 

speech signal. They are based on the known evidence that the information carried by low-

frequency components of the speech signal is phonetically more important for humans than 

carried by high-frequency components. Technique of computing MFCC is based on the short-

term analysis, and thus from each frame a MFCC vector is computed.

MFCC extraction is similar to the cepstrum calculation except that one special step is inserted, 

namely the frequency axis is warped according to the mel-scale. Summing up, the process of 

extracting MFCC from continuous speech is illustrated in Figure 4.4

Figure 4.4 Computing of mel-cepstrum

As described above, to place more emphasize on the low frequencies one special step before 

inverse DFT in calculation of cepstrum is inserted, namely mel-scaling. A “mel” is a unit of 

special measure or scale of perceived pitch of a tone. It does not correspond linearly to the 

normal frequency, indeed it is approximately linear below 1 kHz and logarithmic above. This 

approach is based on the psychophysical studies of human perception of the frequency content 

of sounds. One useful way to create mel-spectrum is to use a filter bank, one filter for each 

desired mel-frequency component. Every filter in this bank has triangular band pass frequency 
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response. Such filters compute the average spectrum around each center frequency with 

increasing bandwidths, as displayed in Figure 4.5.

            Figure 4.5 Triangular filters used to compute mel-cepstrum

     This filter bank is applied in frequency domain and therefore, it simply amounts to taking 

these triangular filters on the spectrum. In practice the last step of taking inverse DFT is 

replaced by taking discrete cosine transform (DCT) for computational efficiency.

The number of resulting mel-frequency cepstrum coefficients is practically chosen relatively 

low, in the order of 12 to 20 coefficients. The zeroth coefficient is usually dropped out because 

it represents the average log- energy of the frame and carries only a little speaker specific 

information. However, MFCC are not equally important in speaker identification and thus some 

coefficients weighting might by applied to acquire more precise result. Different approach to 

the computation of MFCC than described in this work is represented in that is simplified by 
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omitting filter bank analysis.

4.5 Linear Predictive Coding
     Another widely used in speaker recognition area method for speech signal analysis is based 

on Linear predictive coding (LPC) (also know as auto- regressive modeling or AR-modeling). 

the speech production system can be ideally characterized by the pole-zero system function and 

such assumption to use only poles has two main reasons. First reason is the simplicity, and as 

we will see LPC will result in simple linear  equations. Second reason is that based on human 

perception mechanism, human ear is fundamentally “phase deaf” and  phase information is less 

important.All-pole model can exactly preserve magnitude spectral dynamics (the 

“information”) in the speech but may not retain the phase characteristics.

The main idea behind LPC is that given speech sample can be approximated as a linear 

combination of the past speech samples. LPC models signal s(n) as a linear combination of its 

past values and present input (vocal cords excitation). Because in speaker recognition task the 

present input is generally unknown it is simply ignored. Therefore,  the LPC approximation 

depends only on the past values, which is represented by the equation:

where ŝ(n) is an approximation of the present output, s(n-k) are past outputs, p is the prediction 

order, and ak are the model parameters called the predictor coefficients. Prediction error is 

defined as the difference between real and predicted output, also called as prediction residual.

In speaker recognition task, we can use LPC based on the short-term analysis approach. 

Because of the quasi-stationary nature of speech, we can compute a set of prediction 

coefficients from every frame. Then we can use these coefficients as features to describe the 

signal and therefore, the  speaker. In practice, prediction order is set to 12-20 coefficients, 

depending on the sampling rate and the number of poles in the model. Thus, the basic problem 
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in LPC analysis is to determine prediction coefficients from the speech frame. There are two 

main approaches how to derive them. The classical least-square method selects prediction 

coefficients to minimize the mean energy in prediction error over a frame of speech. Examples 

of this method are autocorrelation and covariance method. Another approach is called lattice, 

which permits instantaneous updating of the coefficients. In other words, LPC parameters are 

determined sample by sample. This method is more useful for real-time application.

In speaker recognition area the set of prediction coefficients is usually converted to the so-

called linear predictive cepstral coefficients (LPCC), because cepstrum is proved to be the most 

effective representation of speech signal for speaker recognition. An important fact is that it can 

be done

directly from the LPC parameter set. The relationship between cepstrum coefficients cn and 

prediction coefficients ak is represented in the following equations:

where p is a prediction order. It is usually said that the cepstrum, derived in such a way 

represents the “smoothed” version of the spectrum.

4.6 Alternatives and Conclusions
     MFCC and LPCC described above are well known techniques used in speaker identification 

to describe signal characteristics, relative to the speaker discriminative vocal tract properties. 

They are quite similar as well as different. Both MFCC and LPCC result in the cepstrum 

coefficients, but the method of computation differs. MFCC are based on the filtering of 

spectrum using properties of human speech perception mechanism. On the other hand, LPCC 
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are based on the autocorrelation of the speech frame. There is no general agreement in the 

literature about what method is better. However, it is generally considered that LPCC are 

computationally less expensive while MFCC provide more precise result. The reason of such 

opinion is based on that all-pole model used in the LPC provides a good model for the voiced 

regions of speech and quite bad for unvoiced and transient regions. The main drawback of 

LPCC is that it does not resolve the vocal tract characteristics from the glottal dynamics, which 

vary from person to person.whereas MFCC just pay less attention to them.

However, some authors do not agree with the psychoacoustic analysis on which MFCC are 

based. More broad discussion about the advantages and disadvantages of MFCC and LPCC can 

be found in.

As alternatives for the methods described in this work, a few different approaches can be 

suggested. First approach is to improve either MFCC or LPCC. For example, well-known 

technique to improve recognition is to add the first-order derivatives of cepstrum coefficients 

called delta features to every feature vector. Such features capture the time dynamics of 

cepstrum coefficients from frame to frame. Another technique to improve recognition accuracy 

of systems based on MFCC is proposed in. This method is based on the adding of information 

about the pitch into the feature vectors. Yet another approach is to combine MFCC and LPCC. 

This method can be found in.

Finally, other types of features can be used in speaker identification, such as perceptual linear 

prediction cepstrum coefficients (PLPCC) or eigen-MLLR coefficients. Experimental 

evaluation of recognition accuracy of the MFCC, LPCC and PLPCC was made in  and result of 

this report is that all features perform poorly without some form of channel compensation, 

however, with channel compensation MFCC slightly outperform other types.

Cepstrum representation of the speech signal has shown to be useful in practice. However, it is 

not without drawbacks. The main disadvantage of the cepstrum is that it is quite sensitive to the 

environment and noise .Therefore, in practice speech signal is usually preprocessed to achieve 

more precise representation. This process usually includes noise removal and pre-emphasis.
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Feature Matching and Speaker Modeling
     In this chapter we discuss techniques for modeling of features extracted from the speech 

signal, and methods, which are allowing to compute dissimilarity between unknown speech 

sample and stored speaker models.

5.1 Introduction
     In the previous chapter we were discussing so called measurement step in the speaker 

identification where a set of speaker discriminative characteristics is extracted from the speech 

signal. In this chapter, we go through the next step called classification, which is a decision 

making process of determining the author of a given speech signal based on the previously 

stored or learned information. This step is usually divided into two parts, namely matching and 

modeling. The modeling is a process of enrolling speaker to the identification system by 

constructing a model of his/her voice, based on the features extracted from his/her speech 

sample. The matching is a process of computing a matching score, which is a measure of the 

similarity of the features extracted from the unknown speech sample and speaker model.

There are two main approaches for solving the classification problem in the speaker 

identification, namely template matching and stochastic matching. The template method can be 

dependent or independent of time. In the time-dependent template approach the model consists 

of a sequence of feature vectors extracted from a fixed phrase. During identification a matching 

score is produced using dynamic time warping (DTW) algorithm to align and measure the 

similarity between the template and test phrase. This method can be used for text-dependent 

identification systems. For text- independent systems there is a variation of template matching 

called feature averaging, which uses the mean of some feature over a relatively long

period of time to distinguish among speakers, based on the distance to the average feature. An 

alternative stochastic approach is to build probabilistic model of the speech signal that describes 

its time-varying characteristics. This method refers to the modeling of speakers by probability 

distributions of feature vectors and its classification decision is based on the probabilities or 
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likelihoods. In the following text we go shortly trough the most popular and well-known 

techniques used in modeling and matching.

5.2 Vector Quantization

     Vector quantization (VQ) is a process of mapping vectors from a vector space to a finite 

number of regions in that space. These regions are called clusters and represented by their 

central vectors or centroids. A set of centroids, which represents the whole vector space, is 

called a codebook. In speaker identification, VQ is applied on the set of feature vectors 

extracted from the speech sample and as a result, the speaker codebook is generated. Such 

codebook has a significantly smaller size than extracted vector set and referred as a speaker 

model. Actually, there is some disagreement in the literature about approach used in VQ. Some 

authors consider it as a template matching approach because VQ ignores all temporal variations 

and simply uses global averages (centroids). Other authors consider it as a stochastic or 

probabilistic method, because VQ uses centroids to estimate the modes of a probability 

distribution .Theoretically it is possible that every cluster, defined by its centroid, models 

particular component of the speech.  But practically, however, VQ creates unrealistically 

clusters with rigid boundaries in a sense that every vector belongs to one and only one cluster.

Mathematically a VQ task is defined as follows: given a set of feature vectors, find a 

partitioning of  the feature  vector  space  into  the   predefined

number of regions, which do not overlap with each other and added together form the whole 

feature vector space. Every vector inside such region is represented by the corresponding 

centroid. The process of VQ for two speakers is represented in Figure 5.1.
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                     Figure 5.1 Vector quantization of two speakers

The are two important design issues in VQ: the method for generating the codebook and 

codebook size. Known clustering algorithms for codebook generation are:

• Generalized Lloyd algorithm (GLA),

• Self-organizing maps (SOM),

• Pairwise nearest neighbor (PNN),

• Iterative splitting technique (SPLIT),

• Randomized local search (RLS).

According to, iterative splitting technique should be used when the running time is important 

but RLS is simpler to implement and generates better codebooks in the case of speaker 

identification task. Codebook size is a trade-off between running time and identification 

accuracy. With large size, identification accuracy is high but at the cost of running time and 
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vice versa. Experimental result obtained in is that saturation point choice is 64 vectors in 

codebook. The quantization distortion (quality of quantization) is usually computed as the sum 

of squared distances between vector and its representative (centroid). The well-known distance 

measures are Euclidean, city block distance, weighted Euclidean and Mahalanobis. They are 

represented in the following equations:

where x and y are multi-dimensional feature vectors and D is a weighting matrix . When D is a 

covariance matrix weighted Euclidean distance also called Mahalanobis distance. A set of 

observation was made in concerning the choice of distance for speaker identification task. Their 

conclusion is that weighted Euclidean distance where D is a diagonal matrix and consists of 

diagonal elements of covariance matrix is more appropriate, in a sense that it provides more 

accurate identification result. The reason for such result is that because of their nature not all 

components in feature vectors are equally important and weighted distance might give more 

precise result.

During the matching a matching score is computed between extracted feature vectors and every 

speaker codebook enrolled in the system. Commonly it is done as a partitioning extracted 

feature vectors, using centroids from speaker codebook, and calculating matching score as a 

quantization distortion. Another choice for matching score is mean squared error (MSE), which 

is computed as the sum of the squared distances between the vector and nearest centroid divided 

by number of vectors extracted from the speech sample. MSE formula is represented in the 
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following:

    where X is a set of N extracted feature vectors, C is a speaker codebook, xi  are feature 

vectors, ci are codebook centroids and d is any of distance functions. However, these methods 

are not adapted to the speaker identification. More realistic approaches are proposed in [22,25], 

which are based on the assigning of weights to the code vectors according to their 

discrimination power or the correlations between speaker models in the database.

The final identification decision is made based on the matching score: speaker who has a model 

with the smallest matching score is selected as an author of the test speech sample.

5.3 Gaussian Mixture Modeling
     Another type of speaker modeling techniques is Gaussian mixture modeling (GMM). This 

method belongs to the stochastic modeling and based on the modeling of statistical variations of 

the features. Therefore, it provides a statistical representation of how speaker produces sounds.

  A Gaussian mixture density is a weighted sum of component densities, as represented in the 

following equation : 

where M is a number of components, x is a multi-dimensional feature vector, bi(x) are the 

components densities and pi are the mixture weights or prior probabilities. To ensure that the 

mixture is a proper density, the prior probabilities should be chosen to sum to unity. Each 

component density is given by equation:
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where N is a dimensionality of feature vector x, µi is a mean vector and Σi is a covariance 

matrix for i-th component. For the identification each speaker is represented by his/her GMM, 

which is parameterized by the mean vectors, covariance matrices and mixture weights from all  

component densities. The number of components must be determined, either by some clustering 

algorithm or by automatic speech segmenter. An initial model can be obtained by the estimating 

of parameters from the clustered feature vectors whereas proportions of vectors in each cluster 

can serve as a mixture weights. Means and covariances are estimated from the vectors in each 

cluster. After the estimation, the feature vectors can be reclustered using component densities 

(likelihoods) from the estimated mixture model and then model parameters are recalculated. 

This process is iterated until model parameters converge. This algorithm is called Expectation 

Maximization (EM). In identification phase, mixture densities are calculated for every feature 

vector for all speakers and speaker with maximum likelihood is selected as the author of a 

speech sample.The GMM has several forms depending on the choice of covariance matrix. The 

model can have covariance matrix per one component density, per one speaker or shared for all 

speakers.

5.4 Decision
     The next step after computing of matching scores for every speaker model enrolled in the 

system is the process of assigning the exact classification mark for the input speech. This 

process depends on the selected matching and modeling algorithms. In template matching, 

decision is based on the computed distances, whereas in stochastic matching it is based on the 

computed probabilities. This process is represented in Figure 5.4
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Figure 5.4 Decision process

In template matching, the speaker model with smallest matching score is selected, whereas in 

stochastic matching, the model with highest probability is selected. Practically, decision process 

is not so simple and for example for so called open-set identification problem the answer might 

be that input speech signal does not belong to any of the enrolled speaker models.

5.5 Confidence of Decision
     After performing identification it might be useful to measure the confidence of the decision. 

It might be needed in the open-set task when the speaker model may not exist in the speaker 

database or, based on confidence threshold, identification result might be classified as reliable 

or not. Unreliable tests can be for example further processed by human. The underlying 

assumption in confidence measurements is that maximum score for correct identification is in 

general higher than scores for incorrect identifications and therefore, a confidence measure is a 

quantification of this assumption. According to, the confidence measure is a number from 0 to 

1, where 0 corresponds to the no confidence at all and 1 to the certainty.
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In stochastic models, identification process results in a measure of likelihood or conditional 

probability. There are several methods of confidence measure based on likelihoods. For speaker 

identification two different methods are proposed in. The first method is based on the 

significance testing. In order to estimate the confidence, a two-term mixture model of obtained 

score is constructed:

where x denotes the score of identified speaker, CF and CT denote the classes of incorrect and 

correct identifications respectively, fF(x) and fT(x) denote the distributions of incorrectly and 

correctly identified speakers, P(CT) is the probability of correct identification and P(CF)=1-

P(CT) is the probability of incorrect identification. Both fF(x) and fT(x) are assumed to be 

normal distributions, and four parameters associated with them as well as P(CT) can be 

estimated, for instance, by using cross-validation [17]. The significance confidence measure is a 

measure of how far on the tail of the distribution fF(x) the identification result occurred. Such 

confidence measure (CM) is defined as follows:

The higher the confidence, the more we trust that matching score is too high to be incorrect. 

The problem with this approach is that it does not use the probability of incorrect classification. 

Another approach to attack this problem is based on Bayes rule. Bayes confidence measure is 

defined as follows:
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which is a probability that matching score x is a correct identification.However, in template 

matching models the result is deterministic and based on the distance calculation between 

model and input feature vectors and therefore, we can not use the probability theory apparatus. 

The likelihood in such models can be approximated by exponentiating the matching score:

              

where d is a distance value and a is a positive constant, which is set empirically. In this way 

having the matching scores as the likelihoods, we can use the probabilistic methods described 

above to calculate confidence measures. In this work, we propose another approach for 

measuring confidence in template matching models. It is based on the assumption that 

distribution of matching scores follows a Gaussian shape. Proposed confidence measure is 

represented as follows:

         

where d is a distance or matching score returned by matching function and σ  is a parameter 

selected based on how strong we are measuring confidence, or in other words, based on what is 
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more important: either do not accept incorrect identification or prevent incorrect rejection. The 

intuitive idea behind this approach is that we are quite confident in the matching score if it is 

clearly different from other distances. The parameter σ is selected in the following way: first 

compute the mean of all distances, then select σ from the interval from zero to mean. More 

close to the mean we select σ more higher confidence will be assigned for the matching score 

and vice versa.

Confidence in this work is measured based on the duration of speech samples used for 

modeling and identification, level of noise in speech signal and overlapping of speaker models. 

This fusion technique is shown to have high accuracy for both stochastic and template matching 

models. In real-time systems, the confidence measure might be used as a stopping criterion, e.g. 

when it reaches some predefined threshold, there are no reasons anymore to continue 

identification.

5.6 Alternatives and Conclusions
    The issues described in this chapter actually fall into the more general topic, namely pattern 

recognition, which aims to classify object of interest into one of a number of classes. Therefore, 

the methods applicable for pattern recognition are applicable for speaker identification as well. 

VQ and GMM are the most well studied techniques for speaker identification. Both of these 

methods aim to produce reasonable model for high accuracy identification. However, VQ 

works mostly as a quantifier rather than modeler and therefore, in practice it produces reduced 

number of feature vectors rather than speaker model. Whereas GMM models stochastic 

processes, which underlie speech signal, and therefore, it produces more accurate speaker 

model for robust identification. GMM is based on the broader theory, Hidden Markov Models, 

which got its name “hidden” because it models hidden or not observable stochastic process 

(speech production) that can be observed through another stochastic process (speech signal). It 

outperforms GMM in the tasks where the small amount of training data is available and 

sufficiently fast modeling (training) time is necessary. VQ approach dominated early work in 

speaker identification whereas stochastic modeling has been developed recently and offers more 

flexible and theoretically meaningful probabilistic score

    As an alternatives to the two techniques described above few methods can be suggested. First 
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of all, these are modified GMM’s techniques, modified VQ  and combination of VQ and GMM. 

A novel and fastdeveloping nowadays approach to speaker identification problem is neural

network (NN) based methods. Instead of training of an individual model  for each speaker 

neural networks are trained to model differences among known speakers and therefore, requires 

less amount of parameters and more efficiently performs in training and identification phases.

5.7  Remarks
    In chapters 2,3,4 we were discussing about general techniques used in speaker identification 

area. These methods serve as a basis for future investigations and ideas behind them still lead 

researchers to the new discoveries. Nowadays it is obvious that it is possible to recognize 

speakers from their voices using computers, at least under laboratory environments and within 

small speaker populations. Nowadays research in speaker identification area is mostly 

concentrated on the developing fast and robust algorithms, which can work in difficult, from the 

identification task point of view, conditions, such as in noise or using poor environments. The 

motivation for future work is driven by practical and economical applications of automatic 

speaker recognition. In the next chapters we judge these basic techniques from the real-time 

speaker identification task point of view and also propose few solutions for this kind of 

identification problems.



57

Speaker Identification

      Speaker identification is a computationally expensive task and requires a large amount of 

computations to identify the unknown speaker. In this chapter, we analyze the speaker 

identification methods from the running time point of view. We do not discuss here classical 

optimization problems but concentrate only on the specific for speaker identification area 

approaches to optimization. We start from the analysis of basic techniques, described in the 

previous chapters. Then we discuss possibilities of their optimization.

6.1  Introduction
     In this context, by real-time system we refer to a system, which works under some time 

constraints. These constraints are defined using so called response time, which is a length of 

time from the moment when the task for  the system was set and the moment when the system 

replied with the answer [29]. Usually, time constraints are divided into two types: hard and soft. 

Under hard constraints, when the system can not accomplish its task in proper time it should 

stop executing of the task and reply with failure, whereas under soft constraints system can 

continue executing its task.

By real-time speaker identification (RTSI) we mean here the process of identification, which 

works at the same time when the unknown person is speaking. More precise, RTSI system is a 

soft real-time system with response time is set to the length of the input speech sample. 

However, speaker identification is the time-consuming process and a growing population size 

dramatically decreases identification time, because matching score should be computed for 

every speaker enrolled in the system. Therefore, some optimization is required. As a motivation 

for necessity of optimization, a typical example of the growing identification time as a function 

of population size is represented in Figure 6.1.
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Figure 6.1 Dependency of identification time on population size

    However, we do not consider here optimization of speaker modeling, because it can be done 

once off-line and used during the many identifications. At the speaker modeling step, accuracy 

of modeling is more important for speaker identification rather than computation speed.

6.2  Front-End Analysis and Optimization
       In chapter 4, we discussed two popular types of features, the mel- frequency cepstral 

coefficients (MFCC) and linear predictive cepstral coefficients (LPCC). In this subchapter, we 

analyze the time complexities of these algorithms and also discuss some optimization issues.
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6.2.1  MFCC and LPCC Analysis

     As it was described in chapter 3, MFCC and LPCC are computed based on the short-term 

analysis or, in other words, a vector of MFCC or LPCC is computed for every speech frame. 

Knowing the time needed to extract one MFCC or LPCC vector we can easily compute the time 

needed to extract vectors from the whole speech sample. We also compute approximate amount 

of operations instead of order of algorithm or classical asymptotic time complexity, because for 

real-time case problem size (frame size) is relatively small and order analysis does not make 

sufficient sense.

Let us assume that the analysis frame has N samples. At first, frame is multiplied by a window 

function. It takes N operations. Then the FFT is taken from the speech sample. Time 

complexity of the FFT is N•logN. Next step is to take the magnitude of the complex frequency 

spectrum. The time complexity for this is also N operations. Next, the frequencies are warped 

according to the mel scale. This step depends on the amount of mel-filters M and their 

bandwidths. However, the bandwidths of filters vary for different filters, depending on the order 

in the filter bank, as a function of the filter  center frequency. Let L denote the sum of all filter 

bandwidths L1,…,LM. The time complexity for mel filtering is approximately L operations, 

because one mel-frequency coefficient is computed as a sum of multiplication of all frequencies 

in one interval on filter coefficients. In other words, computing of the i-th mel-frequency 

coefficient takes LI operations and thus, computing of all MFCC takes approximately 

L1+…+LM=L. Therefore, we need to resolve L as a function of N. If we look carefully at 

Figure 2.9, we can see that every filter is exactly covered by its two adjacent filters, or, in other 

words, the sum of filter bandwidths can be approximated as a two times N. Thus, the time 

complexity for mel warping is approximately 2•N operations. Finally, discrete cosine transform 

is taken, for which the time complexity is M•K, where K is a number of desired MFCC.

Summing up, the time complexity of computing of the MFCC is approximately 

N+N•logN+N+2•N+M•K= N•logN+4•N+M•K operations. Dominating parameter in this 

equation is the frame size N, because, for example, for 8kHz sampling frequency and 20 

milliseconds window size N equals to 160, while usually M is set to three times natural 
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logarithm of sampling frequency (usually 29) and K is set to 15.

As discussed in chapter 3, there are two main methods used in computing of linear predictive 

coefficients, which are then transformed to the cepstrum. Namely, they are autocorrelation and 

covariance methods. In both methods one matrix equation is solved to find predictive 

coefficients. The rank of these matrix equals to the number of predictive coefficients and 

therefore, can be computed in constant time p2, where p is a prediction order. In both cases 

matrixes are symmetric with respect to its main diagonal and have only p different elements 

located in appropriate places [20]. According to the algorithm in [20] first element is computed 

by N operations,  second  by    N-1,

and so on. Finally, p-th element is computed by N-p operations. Summing up, computing of 

matrix coefficients takes approximately N•p+(p+1)/2 operations. The final step is to compute 

cepstrum from these coefficients, which also depends only on the number of needed cepstrum 

coefficients and has approximately K•(K+1)/2 operations, where K is a desired amount of 

cepstrum coefficients.  Summing  up,  the  time  complexity  for  computing  LPCC       is

p2+N•p+(p+1)/2+ K•(K+1)/2. More dominating factors here are the frame   size N and 

prediction order. Much expensive part in this computation is computing of autocorrelation 

coefficients. Prediction order is selected to minimize prediction error and practically it is set to 

10-20. Numerical examples for these algorithms are presented in Table 1.

From this table we can see that LPCC can be computed approximately 1.2 times faster than 

MFCC. Note also, that the mel-scaling greatly increase the speed of computing of the cepstrum 

coefficients, because after it, significantly lower input size is provided to the final inverse 

Fourier transform.
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Table 6.1 Numerical examples for time complexities of feature extraction 
algorithms

6.2.2 Front-End Optimization

    Nevertheless the time complexity analysis made in previous subchapter is quite rough, it 

shows advantage of LPCC over MFCC. The main reason of this result is that in MFCC 

computing computationally expensive Fourier transform is used, even though it is computed 

using the fast algorithm (FFT). However, as discussed in chapter 3, the advantage of MFCC is 

their more precise characterizing, comparing with the LPCC, of speech signal. On the other 

hand, these methods are widely used in the speaker identification and good results are reported 

for both of them.

In our case of real-time system, this time complexity is not so important, because the problem 

size (frame size) is relatively small and both of these algorithms are well studied and, in 

general, no essential improvements can be done for them. We concentrate mostly on the 

abilities to improve computation speed based on the problem nature. As we know, human’s 

speech does not consist only from connected speech sounds, but there are always some silent 

regions between them. By removing these parts of speech, we can greatly improve 

identification speed, because the amount of frames will be reduced. Another approach might be 

to classify speech frames as a speaker discriminative or not, and use only discriminative.
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By silence we mean here the region of speech signal, which does not contain speech 

information. For instance, it can be pauses between words or sentences, filled by background 

noise. Examples of silent regions are represented in Figure 6.2.

Figure 6.2 Silence detection

     Silence detection is usually based on the measuring some signal characteristics, for instance, 

the following:

• Relative energy level,

• Zero crossing rate,

• First autocorrelation coefficient,

• First LPC linear predictor coefficient,

• First mel-frequency cepstrum coefficient,

• Normalized prediction error.

The easiest method proposed in this work to detect silent regions in speech is based on the 

computing of variations of the signal samples in speech frame, against the frame mean. If 

variations are big enough, the frame is considered as a speech frame, otherwise as a silence. 

Silent region is detected in the following way. First, the mean of the frame samples is 

computed, then cumulative sum of absolute magnitude of differences between
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samples and mean is collected. Then if this sum exceeds predefined threshold the frame is 

considered as a speech frame, otherwise as a silent frame. This process is represented in the 

following equation:

           

     where sk(n) are the signal samples for frame k, µ is a mean and Ω is a cumulative sum, 

compared with the threshold. Although this method is quite simple, our experiments show that 

it performs good for clean speech and poor for noisy speech. However, the threshold should be 

set different for different sound recording hardware.

In this work, the authors designed a novel explicit energy-based speech detection algorithm. It 

measures the energy of the speech frame and makes decision based on this energy level. 

Proposed algorithm works in four steps. First, speech is preprocessed by high-pass filtering. 

Then two energy thresholds  are calculated using the following equations:

where Emin is the minimum energy value, computed as a minimum speech sample value for 
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whole signal, Emax is the peak energy value for the speech signal, and SL is the average level 

of the signal above T1, computed using the following equation:

                 

where i is the index for all frames having sk>T1. Using these threshold rough boundaries of 

speech are estimated. At the third step, these boundaries are refined using zero-crossing rate. 

Finally, silent frames are eliminated. This algorithm yielded good results both in accuracy and 

identification speed, and therefore, it might be used for real-time speaker identification [4].

In the methods described above, frames are rejected before the feature extraction, or, in other 

words, independently on the feature extraction algorithm. Another approach is to use extracted 

features to classify frames as a silent or not. However, since feature extraction is required, they 

provide less input for computationally expensive matching step, and thus improve identification 

speed. In two classes, speech and silence are discriminated based on finding of the linear 

function, which maximizes between classes and minimizes within classes and operates on the 

MFCC.Cepstral features are used to compute energy  of the frame and based on this energy we 

can decide does this frame contain speech or not.

An approach based on the selection of input frames, which at best contribute to the speaker 

identification. This method is based on calculating of the likelihoods for the speech frames 

using Gaussian modeling. Noise removal or other types of speech enhancements can also be 

used as an optimization technique because analysis of enhanced speech will produce more 

precise results and therefore, less data will be needed for identification

6.2.3 Remarks

    In this subchapter, we analyzed the two basic methods used in feature extraction from the 

time complexity point of view. Linear predictive cepstrum showed its advantage over mel-

frequency cepstrum in this sense. However, there is a trade-off between the computation speed 

and the identification accuracy, and thus, the algorithm for feature extraction should be selected 

based on what is more important in a particular case. We also proposed optimization method, 
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which is based on the classification of the speech as a silent or not. However, there is a trade-off 

between time, spent on the silence detection and the identification speed up and accuracy. Exact 

amount of frames, dropped as a silent frames depends on many factors, such as speaking style 

and speed. Practically, silence removal reduces identification time by 5-10 percents.

6.3  Feature Matching Analysis and Optimization
    In this subchapter, we discuss matching step analysis and optimization. Modeling step is left 

out from discussion, since modeling can be done offline, and it does not affect the real-time 

identification. Also updating of speaker models after identification can be done independently 

of speaker, using already recorded data. Also, heuristic optimization for matching, proposed in 

this work, namely speaker pruning is left in separate chapter.

6.3.1  Analysis of Matching Step in VQ and GMM

Matching step in VQ consists in the computing of quantization distortion between feature 

vectors and speaker model. In the previous chapter, we described several approaches to its 

computation. Most of them are based on the finding of the nearest centroid for every feature 

vector and computing of distortion as a sum of distances between vector and its centroid. Let us 

assume that after feature extraction step, we have N feature vectors, and M speaker models are 

enrolled in the system and each speaker model has K centroids. The number of operations 

needed for matching step is equal to N•M•K, because in order to find nearest centroid for every 

vector we have to calculate distance to every centroid in the model and select centroid with the 

smallest distance. Then we should repeat this process for every speaker model. This process is 

represented in Figure 6.3.
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Figure 6.3 Matching of one vector in VQ

      However, in real time applications amount of feature vectors is relatively small and can be 

dropped. The size of feature vectors also affects computation time. The time complexity for 

distance calculation can be approximated as an O(p), where p is a vector size. Therefore, the 

result time complexity is O(M•K•p).

In the GMM approach, matching step consists in the computing of probability densities for 

every feature vectors. Let N denote amount of feature vectors, K amount of densities in the 

model and M amount of speaker models, enrolled in the system. Again as it was in the VQ case, 

the time needed for computation of matching score takes O(N•M•K). Because we compute all 

densities in the model for every feature vector and this process is repeated for every model, 

enrolled in the system. Computation of model densities depends on the chosen type of 

covariance matrix. If this matrix is diagonal, then computation of model densities can be 

approximated as 2•p operations, but in the  case  of  full  matrix  it  takes  approximately  p2+p  

operations.   However, practically only diagonal matrix is used because full matrix requires 

dramatically greater amount of computations. Summing up, time complexity for GMM 

matching is O(M•K•p). Again we dropped amount of feature vectors because in real-time case 

it is relatively small.

The preceding discussion showed that in both cases time complexity can be approximated as 

O(M•K•p), where M is an amount of models in the system, K is a model size and p is a feature 
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vector dimensionality. In general, according to our analysis, if diagonal matrix is used in GMM 

for both approaches computation time is almost the same. The main factors that affect 

computation time are model size and number of enrolled speakers, because computation should 

be done between every feature vector and every model. However, these approaches to 

computing matching scores are straightforward and in the rest of this chapter we discuss the 

possibilities to improve them.

6.3.2 Matching Optimization

    Computing of matching score for every enrolled model is the most computationally 

expensive step in speaker identification. Such approach,when we straightforward compute score 

for every model and find the best model by searching the minimum matching score, will lead to 

the identification system with high computational requirements.

For VQ, this problem can be leaded to the more general problem, namely searching in metric 

spaces, because it uses some metric functions to compute distances. Using algorithms from this 

theory, nearest centroid in a codebook can be found more quickly and therefore, overall 

identification time can be reduced, which is suitable for discrete-valued distance functions or 

for functions, which have finite amount of values. They propose a tree, called Burkhard-Keller 

tree (BKT), which is constructed in the following way. 

    First,one vector q is arbitrary selected from the set of vectors U as a root of tree. Then for 

every distance value i>0, a set of vectors Ui={u Є U,d(u,q)=i} which have such distance to the 

root, is selected and for every non-empty set Ui one child is created. Then this algorithm is 

repeated for every child until there are more then one vector in any of the children. First step of 

this algorithm is represented in Figure 6.4.
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Figure 6.4 Building of Burkhard-Keller tree

     In the searching stage with a given vector t and a searching radius r we calculate the distance 

to the root d(q,t) and enter into the all children i such that d(q,t)-r ≤ i ≤ d(q,t)+r. Each time we 

arrive to a leaf u we calculate d(u,t) and if it less then r we report the element u. The triangular 

inequality of distance functions ensures that we cannot miss the answer. However, this method 

is suitable only for discrete-valued distance functions and report vectors that have distance less 

or equal to r from given vector t, and therefore, some modification for VQ is required. 

    To move from the continuous distance function to the discrete-valued it should be quantized 

using suitably small step. They propose binary tree where children are created based on the 

mean of the distances from the root to all children. Those, which have distance less than mean, 

are moved to the left child, others are moved to the right child. This process continues 

recursively for all children, which contain more than one vector. At the searching stage it works 

as described for Burkhard-Keller tree.

Another approach to improve identification speed, proposed in this work,   is to reduce amount 

of test vectors by forming a codebook of them using VQ. This method produces centroids for 

test data, which are used in comparisons with speaker models instead of the whole test set. Such 

approach is useful for different modeling techniques because it does not depend on the 
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modeling algorithm. Schematically this process is represented in Figure 6.5.

                                         Figure 6.5 Quantization of test data

Based on our experiments this approach greatly reduces computation load for identification 

system without degrading significantly identification accuracy. However, there is always a 

trade-off between time, spent on the codebook creation, and time, gained by reducing the 

amount of vectors. Because codebook generation also takes time, there is some maximum 

amount of centroids, which can replace the test data without decreasing of identification speed, 

comparing with direct computation.

For example, well-known clustering algorithm GLA takes approximately M•N distance 

calculations for one step, where M is a number of clusters, used for quantization of test data, 

and N is amount of test vectors. Let G be the number of GLA steps and K is the size of speaker 

model. Summing up, the number of distance calculations, required with quantization of test 

data, equals to the number of distance calculations needed for codebook generation M•N•G plus 

M•K calculations for matching quantized data with speaker model. Therefore, it is 

M•N•G+M•K distance calculations. On the other hand, matching without quantization requires 

N•K distance calculations. Numerical examples for the number of distance calculations with 
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GLA steps fixed to 3 and model size fixed to 64 are presented in Table 6.2.

From this table we can see that quantization of test data is useful with different amount of test 

vectors. However, there is always a trade-off between matching speed-up and identification 

accuracy. For the real time systems this approach can also be useful. Even though the amount of 

test vectors is relatively small, we can replace few input vectors by one code vector and greatly 

improve identification speed.

Table 6.2 Comparison of matching with and without quantization

For GMM modeling there are no well-known techniques which can essentially improve 

identification speed. Because for every model a set of densities should be computed and, for 

instance, this process does not fit to the mathematical requirements for distance functions and 

therefore, mathematical apparatus for metric spaces cannot be used here.

6.3.3 Remarks
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    In this subchapter we analyzed two basic techniques for speaker modeling. From the first 

time analysis, under certain conditions VQ and GMM do not show any great difference in 

identification speed. However, VQ deals with a quite old and therefore, well studied area in 

mathematics, namely searching in metric space. And there is a great amount of different 

techniques, which can reduce number of computation by pre-computing information about 

speaker models. On the other hand, GMM approach is quite new for speaker identification and 

different techniques for its speed improvements

are nowadays under investigation. We also proposed our approach, which can reduce amount of 

comparisons by reducing the number of test vectors.

6.4  Conclusions
    In this chapter we discussed known speaker identification techniques from the real-time 

systems point of view. The main requirement, which is set by the meaning of real-time system, 

is fast identification time. However, there is always a trade-off between identification speed and 

accuracy. Based on the analysis in this chapter we can conclude that matching phase in the 

identification is the most time consuming part, because it requires large amount of comparisons 

between high-dimensional vectors. For example, from table 6.1 we can see that computation of 

one 12 dimensional feature vector, even using slowest method and high quality speech, requires 

about 6543 operations. On the other hand, based on Table 6.2 the matching of this vector 

requires distance computations between this vector and all speaker models. If we assume for 

example, that there are only 20 speakers in the database, modeled by 64 codebook centroids 

each, the amount of computation equals to 20•64•12 = 15306 operations. The amount of 

computation grows rapidly if the size of speaker database increases. Practically, feature 

extraction takes less than 5-10 percent of time, spent on the identification. Therefore, the main 

efforts should be leaded on the matching optimization.

In this chapter we also discussed few optimization methods. However, we did not consider a 

general approaches to speed improvements. Indeed, we discussed methods related only to the 

area of speaker identification. The main approaches were silence removal and fast searching 

algorithms in the high- dimensional vector spaces.
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Speaker Pruning

      As we discussed in previous chapter, speaker identification requires a great amount of 

computations, which are mostly distance calculations between test vectors and speaker models. 

We also discussed some possible ways to improve identification speed, such as silence removal 

and algorithms for fast searching in metric spaces. In this chapter, we propose our own 

approach to this problem, which can be combined with these two methods. Our method is 

heuristic, in a sense that it improves identification speed at the cost of a little growing of the 

probability of incorrect identification. Therefore, there  is a trade-off between the running time 

and identification accuracy.

7.1  Principle of Speaker Pruning
    In this work, by speaker pruning we mean the continuous process of reducing amount of 

speaker models involved into the matching step by  pruning from it models, to which much 

probable unknown speaker voice does not belong. The main idea behind this technique is that at 

the beginning we do not know anything about unknown speaker voice. But when more data 

comes into the system we can realize what models are close to the unknown speech sample and 

what models are far away from it and can be ignored in the next computations. This process is 

illustrated in Figure 6.1. The ellipses represent the speaker models and the “x” dots are the 

feature vectors of unknown speaker. Speaker identification using speaker pruning works in the 

following way. At the beginning matching function is computed between test vectors and all 

speaker models. Then, depending on the pruning algorithm, when there is enough data some 

speaker models are dropped and not anymore used in matching.
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                             Figure 7.1 Principle of speaker pruning

This process continues until finally only one speaker model is left. If there is not enough test 

data to finish pruning process, final decision is made between remained speaker models based 

on the value of the matching function. Following issues should be taken into account during 

development of speaker pruning algorithm [23]:

• what are the features,

• how speaker models are represented and what is a matching function,

• what is the pruning criterion (when the speaker model should be pruned),

• how many vectors should be extracted prior to next pruning,

• how many speakers are pruned at each iteration.

Let us suppose that feature vectors are extracted and inserted into so called input buffer 

independently of speaker pruning process and identification only deals with input buffer of 

feature vectors. Speaker pruning is iterative process and depends on two main factors:

1. pruning interval,

2. pruning criterion.
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Pruning interval defines when to check speaker model against pruning criterion, because it is 

computationally not efficient to check models every feature vector. This factor specifies the 

amount of vectors taken from the input

buffer before the next pruning iteration. This process is represented in Figure 7.2.

Figure 7.2 Principle of speaker pruning

Pruning criterion describes the way in which speaker models are pruned. All speaker models are 

checked against this criterion and those who meet it are pruned from identification process. 

Two proposed variants of pruning criterion are discussed in detail in the following subchapters. 

The following notations are used:

X Feature vectors of the unknown speaker

Ci The model of i-th speaker

D(X,Ci) Matching function between vector sequence

X and speaker model Ci

M The number of new vectors read at each iteration
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K The number of pruned speakers at each iteration

It is also supposed that matching function D computes dissimilarity between vector sequence 

and speaker model. Stochastic matching functions can be in general transformed to this form.

7.2 Static Pruning
   In this subchapter we discuss the first proposed variant for speaker pruning.

7.2.1 Principle

    The basic idea of static pruning is to prune K worst speaker models at every pruning interval. 

To do that, an ordered list of speaker models is maintained. At each iteration, K models, which 

have the smallest matching score, are pruned out from the list. As the new vectors appear in the 

input buffer, the matching scores are updated and list is sorted. This process continues until 

only one model is left in the list. Note that, in practice, updating of matching scores can be done 

fast by using cumulative values of matching function. The pseudocode for static pruning is 

given in Figure 7.3.
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Figure 7.3 Static pruning

This process is controlled by two parameters. They are pruning interval M and number of 

speaker models pruned at each iteration K. One iteration of static pruning is illustrated in Figure 

7.4.
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Figure 7.4 One iteration of static pruning

     Also the static pruning is a simple algorithm, it shows good results in practice and its 

implementation is very easy. Its implementation consists only in addition of a special counter 

for the new feature vectors. When this counter reaches a predefined value M, the models are 

sorted and K worst models are pruned.

7.2.2 Complexity analysis

    Let us assume that feature vectors have L elements and every model has the same size S. 

Then, computing of matching score between one vector and speaker database will take 

approximately N•S•L operations, where N is amount of models in the database. Further, one 

iteration of static pruning takes M•S•L•T, where T is amount of models, which are not pruned 

yet, plus

number of operations, needed for model sorting. Simple sorting algorithm, like bubble sort, 

takes T2 operations, where T is a number of models to sort. More powerful sorting algorithms 

work faster and take T•log(T) operations, but for simplicity of analysis we use simple 
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algorithm. Let n be the current iteration

number, then T equals to N-(n-1)•K, because K models are pruned at each

iteration. Therefore, the final equation for the number of operations, needed for one iteration of 

static pruning, is given by equation 6.1.

The first term in this equation corresponds to the matching of the remained models and the 

second term corresponds to the sorting of the remained models, based on the computed 

matching scores. Note that we start sorting only on the second iteration, after we have computed 

matching scores. Based on this equation, we can compute the cumulative number of operation 

needed for n iterations:

                           

Summing these numbers of operations, we get the number of operations, made after n 

iterations:
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On the other hand, matching without pruning requires P•S•L•N operations, where P is a number 

of test vectors. To compare it with equation (6.1) we fixed

some of the parameters to see how these two methods behave during the time. We compare 

static pruning and full search by varying the number of feature vectors, available in the input 

buffer. Iteration number for static pruning can be resolved from the amount of feature vectors in 

the input buffer P as n = P/M. The fixed parameters are M=10, S=64, L=12, N=500. The results 

for two different K=10 and K=20 are represented in Figure 7.5.

                    

Figure 7.5 Static pruning complexity
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From this figure we can see, that with the small amount of test vectors static pruning requires 

more computations, but when more vectors are available it starts work faster, because some of 

the models are pruned and are not used in computations. We can also see that pruning 

parameters also affect computation load. For example, growing number of pruned speakers 

increase identification speed. Note also, that after N/K iterations static pruning will stop, 

because all models except one will be already pruned.

7.3 Adaptive Pruning
   In this subchapter we discuss the second proposed pruning variant.

7.3.1 Principle

    In the adaptive pruning, the pruning criterion is data-driven. This means that the number of 

speakers pruned at each iteration depends on the current distribution of the matching scores of 

remained models. Based on the mean value µ and standard deviation σ of the matching score 

distribution, a pruning threshold θ is set and all models, which have matching score above this 

threshold are pruned. After pruning, the distribution of matching scores changes, and therefore, 

the mean and standard deviation must be recomputed. The pseudocode for adaptive pruning is 

given in Figure 7.6

                     

Figure 7.6 Adaptive pruning

This adaptive pruning is controlled by two parameters. First is the pruning interval M, and the 
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second parameter ŋ determines the “degree” of the thresholding. The larger it is, the less 

speakers are pruned and vice versa. One iteration of adaptive pruning is represented in Figure 

7.7

     

Figure 7.7 One iteration of adaptive pruning

This method has the following mathematical interpretation. In our experiments we found out 

that distribution of matching scores follows more or less a Gaussian curve. Because of this, the 

pruning threshold corresponds to the certain confidence interval of the normal distribution, and 

ŋ specifies its width. According to the probability theory, for Gaussian distribution interval [µ –

θ, µ + θ] contains 68 percent of speaker, and interval [µ – 2•θ, µ + 2•θ] contains 95 percent 

[33]. For example, if ŋ equals one we prune 16 percent of speakers, or if it equals two we prune 

2,5 percent. In the first case the probability that the correct speaker was not pruned is at least 84 

percent, and in the second case at least 97,5 percent.

7.3.2 Complexity analysis   

    Let us assume, that distribution of matching scores follows ideally the Gaussian shape at 

every iterations, and thus, at every iteration the same percentage of speaker models is pruned. 

Therefore, at every iteration q percents of remained models are pruned. Let us also assume that 

feature vectors have L elements and every model has size S. Then calculating of matching score 
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between one vector and speaker database will take approximately N•S•L operations, where N is 

an amount of models in database.

Further, one iteration of adaptive pruning takes M•S•L•T, where T is an amount of models, 

which are not pruned yet, plus number of operations, needed for threshold calculation. 

Threshold calculation is simple and takes T operations  to find mean and T operations to find 

standard deviation. However, we do not calculate threshold at first iteration, and therefore, one 

iteration takes M•S•L•T+2•Q operations, where Q is a number of not pruned models at previous 

iteration. To calculate T and Q, let us look at the number of speakers, remained at each 

iteration:

Iteration 1: N-q •N

Iteration 2: N-q •N-q •(N-q •N)=N- 2•q •N+q2•N

Iteration 3: N- 2•q •N+q2•N-q •(N- 2•q •N+q2•N) = N- 3•q •N+3•q2•N-3•q3•N

…

Let n be the current iteration number, then based on the Binomial theorem we can calculate the 

number of remained speakers as a function of n:

Based on this equation we can compute the final number of operations for iteration n:

                     

Summing these numbers of operations for every iteration, we get the following:
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Matching without pruning requires P•S•L•N operations, where P is a number of test vectors. To 

compare it with adaptive pruning, we fixed some of the parameters to see how these two 

methods behave during the time. We compare adaptive pruning and full search by varying the 

number of feature vectors, available in the input buffer. Iteration number for adaptive pruning 

can be resolved from the amount of feature vectors in the input buffer P as n =  P/M. The fixed 

parameters are M=10, S=64, L=12, N=500. The results for two different ŋ=1 and ŋ=2 are 

represented in Figure 6.8. The percentage of speaker models pruned at every iteration q can be 

resolved from ŋ based on the assumption, that distribution follows Gaussian shape. For ŋ=2 we 

have q=0.025 and for ŋ=1 we have q=0.16.

Figure 7.8 Adaptive pruning complexity

From this figure we can see, that even at the beginning adaptive pruning requires less or the 
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same amount of computations. We also can see, that pruning threshold can significantly change 

computation load. However, it should be chosen accurately to prevent high error rate.

7.4 Discussion
    In this chapter, we proposed a speaker pruning algorithm, which is a novel approach to 

improving identification speed during the matching step. We proposed two pruning variants, 

static and adaptive. Also we compared these two methods with the full search, and the main 

conclusion from it is that both algorithms work well and outperform full search, except static 

pruning is useful only for sufficiently large amount of test vectors. Combining Figure 6.5 and 

Figure 6.8 we can compare two variants between each other. This comparison is represented in 

Figure 6.9. From this figure we can see that adaptive pruning is more useful for cases with

small amount of test vectors. However, for large number of vectors static pruning outperforms 

adaptive, because it prunes every iteration the same number of speakers, whereas adaptive 

variant prunes less and less speakers. It is also the reason why static pruning stops earlier than 

adaptive. However, the analysis presented in this chapter is only theoretical and it does not tell 

us anything about identification error rate. It only shows us the computational load for different 

parameters and algorithms dynamics over time. Note also, that analysis for static pruning is 

exact, whereas analysis for adaptive variant is made under certain assumptions and therefore, 

practical justification is needed. In the next chapter we present experiments on the re
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Figure 7.9 Complexity of static and adaptive pruning

For future work, we plan to extend the algorithm to use time-depended values for parameters, 

which are controlling the pruning. For example, pruning interval should be initially large to 

give ability to stabilize for matching scores, and then it should be gradually minimized to make 

the identification faster. Pruning threshold can also be extended. It can be based on probability 

that correct speaker already has the minimum matching score. When it is high enough the 

pruning threshold can be increased to prune more speakers and vice versa.
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Conclusions 
In this work, we studied and analyzed different techniques for speaker identification. In the first 

part, we started from the identification background, which is based on the digital signal theory 

and modeling of the speaker vocal tract. Then we discussed various techniques for reducing 

amount of test data or feature extraction. Further, we studied most popular speaker modeling 

methods, which are commonly used in the speaker identification. In the second part, we studied 

techniques, discussed in the previous part, from the real-time systems point of view. We 

proposed different optimization approaches to the speaker identification. However, we 

discussed only methods related to the speaker identification area, and left out from discussion 

general optimization methods.

We proposed a speaker pruning as a novel approach to reducing amount of distance calculations 

in the matching step. This method is heuristic, and therefore, improves identification speed at 

the cost of increasing of the probability of incorrect identification. We proposed two variations 

of the pruning algorithm and made approximate time complexity analysis for this methods and 

concluded that it significantly improves  matching step.  Finally, we studied speaker pruning 

empirically and found out that theory analysis was correct and it really improves identification 

speed. We also compared different parameter combinations for both variants of speaker 

pruning.From this work we can conclude that in speaker identification process matching 

between test vectors and speaker models is the most time consuming part. It takes about 90 

percent of all time spent on the  identification. Therefore, optimization efforts should be 

concentrated on the matching optimization. Based on our experiments and theoretical analysis, 

we can also conclude that proposed speaker pruning is useful in practice. For instance, the error 

rate of 0.46 percent can be reached using adaptive pruning

in 24 seconds, whereas for full search we reached error rate of 0.15 percent in 230 seconds. 

These two results in general can not be compared because using pruning we reach result faster 

but the full search is more accurate. Therefore, pruning should be used in applications where the 

identification time is more important. We also proposed future directions for improvements of 

speaker pruning algorithm. We plan to extend the algorithm to use time- depended values for 

parameters, which are controlling the pruning. This is the topic for future research.
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APPENDIX

HMM = Hidden Markov Model

DSP = Digital Signal Processing

DFT = Discrete Fourier Transform

IDFT = Inverse Discrete Fourier Transform

FFT = Fast Fourier Transform

MFCC = Mel-frequency Cepstrum Coefficients

LPC = Linear Predictive Coding

VQ = Vector Quantization

GLA = Generalized Lloyd Algorithm

SOM = Self-organizing Maps

PNN = Pairwise Nearest Neighbor

SPLIT = Iterative Splitting Technique

RSL = Randomized Local Search

RTSI = Real-Time Speaker Identification



88

                     List of References

[1] B. S. Atal, “Automatic Recognition of Speakers from their Voices”,
Proceedings of the IEEE, vol 64, 1976, pp 460 – 475.

[2] L. Besacier, J.F. Bonastre, “Frame Pruning for Speaker Recognition”, Acoustics, Speech 
and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference, Vol. 
2, pp. 765-768.

[3] Z. Bin, W. Xihong, C. Huisheng, “On the Importance of Components of the MFCC in 
Speech and Speaker Recognition”, Center for Information Science, Peking University, 
China, 2001.

[4] D. Burileanu, L. Pascalin, C. Burileanu, M. Puchiu, “An Adaptive and Fast Speech 
Detection Algorithm”, Proc. TSD 2000 - Third International Workshop on Text, Speech and 
Dialogue, Brno, Czech Republic, September 13-16, 2000.

[5] W. Burkhard and R. Keller, “Some approaches to best-match file searching”,
Comm. Of the ACM, 16(4):230-236, 1973.

[6] J.P. Campbell, “Speaker Recognition: A Tutorial”, Proc. of the IEEE, vol. 85, no. 9, Sept 
1997, pp. 1437-1462

[7] E. Chavez, G. Nevarro, R. Bayeza-Yates, J. Marroquin, “Searching in Metric Spaces”, 
ACM Computing Surveys (CSUR) September 2001 Volume 33, pp.
273-321.

[8] J. R. Deller, J. H. L. Hansen, J. G. Proakis, Discrete-Time Processing of Speech 
Signals, Piscataway (N.J.), IEEE Press, 2000.

[9] M. Do, M. Wagner, “Speaker Recognition with Small Training Requirements Using a 
Combination of VQ and DHMM”, Proc. of Speaker Recognition and Its Commercial and 
Forensic Applications, pp. 169-172, Avignon, France, April 1998.



89

[10] H. Ezzaidi, J. Rouat, D. O’Shaughnessy, “Towards Combining Pitch and MFCC for 
Speaker Identification Systems”, Aalborg, Eurospeech 2001 – Scandinavia.

[11] T. Filho, R. Messina, E. Cabral, “Learning Vector Quantization in Text- Independent 
Automatic Speaker Identification”, 5-th Brazilian Symposium on Neural Networks 
December 09 - 11, 1998 Belo Horizonte, MG, Brazil, pp. 135-

139

12] P. Fränti, T. Kaukoranta, O. Nevalaine


