NEW AGE

An Introduction
with
Applications

Rao V. DukKkipati

@ NEW AGE INTERNATIONAL PUBLISHERS

MATLAB

An Introduction
with
Applications

Thispage
Intentionally left
blank

MATLAB

An Introduction
with
Applications

Rao V. Dukkipati

Ph.D., P.E.

Fellow of ASME and CSME

Professor and Chair

Graduate Program Director
Department of Mechanical Engineering
Fairfield University

Fairfield, Connecticut

USA

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS
New Delhi ¢ Bangalore ¢ Chennai * Cochin * Guwahati * Hyderabad
o :

Jalandhar ¢ Kolkata * Lucknow * Mumbai ¢ Ranchi
PusLisu Foroneworto ViSIt s at www.newagepublishers.com

Copyright © 2010, New Age International (P) Ltd., Publishers
Published by New Age International (P) Ltd., Publishers

All rights reserved.

No part of this ebook may be reproduced in any form, by photostat, microfilm,
xerography, or any other means, or incorporated into any information retrieval
system, electronic or mechanical, without the written permission of the publisher.
All inquiries should be emailed to rights@newagepublishers.com

ISBN (13) : 978-81-224-2920-6

PUBLISHING FOR ONE WORLD

NEW AGE INTERNATIONAL (P)LIMITED, PUBLISHERS
4835/24, Ansari Road, Daryaganj, New Delhi - 110002
Visit usat www.newagepublishers.com

To
Lord Sri Venkateswara

a
Rectangle

Thispage
Intentionally left
blank

PREFACE

The main objective of this book is to provide the students with the opportunity to improve their
programming skills using the MATLAB environment to implement algorithms and to teach the use of
MATLAB as a tool in solving problems in engineering. This book includes the coverage of basics of
MATLAB and application of MATLAB software to solve problems in electrical circuits, control systems,
numerical methods, optimization, direct numerical integration methods in engineering. With this
foundation of basic MATLAB applications in engineering problem solving, the book provides
opportunities to explore advanced topics in application of MATLAB as a tool.

An introduction to MATLAB basics is presented in Chapter 1. Chapter 1 also presents MATLAB
commands. MATLAB is considered as the software of choice. MATLAB can be used interactively and
has an inventory of routines, called as functions, which minimize the task of programming even more.
Further information on MATLAB can be obtained from: The MathWorks, Inc., 3 Apple Hill Drive, Natick,
MA 01760. In the computational aspects, MATLAB has emerged as a very powerful tool for numerical
computations involved in engineering problems. The idea of computer-aided design and analysis using
MATLAB with the Symbolic Math Tool box, and the Control System Tool box has been incorporated.
Chapter 2,3,4,5 and 6 consists of many solved problems that demonstrate the application of MATLAB to
the analysis of electrical circuits, control systems, numerical methods, optimization and direct numerical
integration methods. In chapter 6, we have briefly reviewed the direct numerical integration methods for
the solution of a single or system of differential equations. Many numerical methods are available for the
solutions of the response of dynamic systems. We have discussed several widely used step-by-step
numerical integration methods for linear dynamic response analysis. A brief description of these
integration methods is presented and their application is illustrated. The integration schemes considered
were three explicit and four implicit methods. They are the explicit schemes (the central difference method,
two-cycle interaction with trapezoidal rule and fourth order Runge-Kutta method) and the implicit schemes
(Houbolt method, Wilson Theta method, Newmark Beta method and the Park Stiffly stable method).
Application of these direct numerical integration methods is illustrated with a case study of a linear
dynamic system.

Presentations are limited to very basic topics to serve as an introduction to advanced topics in
those areas of discipline. Chapters 2, 3, 4, 5 and 6 include a great number of worked examples and
unsolved exercise problems to guide the student to understand the basic principles, concepts and use of
MATLAB in solving a variety of engineering problems.

a
Rectangle

viii

Preface

An extensive references to guide the student to further sources of information on electrical circuits,
control systems, numerical methods, optimization and direct numerical integration methods is provided at
the end of each chapter. All end-of-chapter problems are fully solved in the Solution Manual available
only to Instructors.

I sincerely hope that the final outcome of this book will help the students in developing an
appreciation for the topic of solving engineering problems with MATLAB.

Rao V. Dukkipati

ACKNOWLEDGEMENT

I am grateful to all those who have had a direct impact on this work. Many people working in the general
areas of engineering have influenced the format of this book. I would also like to thank and recognize all
the undergraduate and graduate students in mechanical and electrical engineering programs at Fairfield
University over the years with whom I had the good fortune to teach and work and who contributed in
some ways and provide feedback to the development of the material of this book. In addition, I greatly owe
my indebtedness to all the authors of the articles listed in the bibliography of this book. Finally, I would
very much like to acknowledge the encouragement, patience and support provided by my family members:
Sudha, Ravi, Madhavi, Anand, Ashwin, Raghav, and Vishwa; who have also shared in all the pain, frustration,
and fun of producing a manuscript.

I would appreciate being informed of errors, or receiving other comments about the book. Please write
to the authors’ address or send e-mail to Professordukkipati @yahoo.com.

Rao V. Dukkipati

a
Rectangle

Thispage
Intentionally left
blank

CONTENTS

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22

Preface
Acknowledgement

MATLAB BASICS

Introduction

Arithmetic Operations

Display Formats

Elementary Math Built-in Functions
Variable Names

Predefined Variables
Commands for Managing Variables
General Commands

Arrays

Operations with Arrays
Element-by-Element Operations
Random Numbers Generation
Polynomials

System of Linear Equations
Script Files

Programming in MATLAB
Graphics

Input/Output in MATLAB
Symbolic Mathematics

The Laplace Transforms
Control Systems

Summary

References

Problems

Vil
ix

1-95

O© I N O O W w

0 0 00 W W LW DN DN
| B SO U B N ORI Yo i o's I 7< B NG JU R ' B (e S (N

a
Rectangle

Xii

Contents

2.1
2.2
2.3
24

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16

3.17
3.18
3.19
3.20
3.21
3.22

4.1
4.2
4.3
44
4.5
4.6

ELECTRICAL CIRCUITS
Introduction

Electrical Circuits

Kirchhoff’s Laws

Example Problems and Solutions
References

Problems

CONTROL SYSTEMS
Introduction

Control Systems

Examples of Control Systems
Control System Configurations
Control System Terminology
Control System Classes
Feedback Systems

Analysis of Feedback

Control System Analysis and Design Objectives

MATLAB Application
Second-order Systems
Root Locus Plots
Bode Diagrams
Nyquist Plots

Nichols Chart

Gain Margin, Phase Margin, Phase Crossover Frequency

and Gain Crossover Frequency
Transformation of System Models

Bode Diagrams of Systems Defined in State Space
Nyquist Plots of a System Defined in State Space
Transient-Response Analysis in State Space
Response to Initial Condition in State Space

Example Problems and Solutions
References
Problems

NUMERICAL METHODS
Introduction

System of Linear Algebraic Equations

Gauss Elimination Method
LU Decomposition Methods
Choleski’s Decomposition
Gauss-Seidel Method

97-120
97

100

102

103

118

118

121-199
121
121
122
123
124
126
127
128
129
129
131
132
132
133
134

134
135
136
136
137
139
139
188
190

201-260

201
201
201
202
203
203

Contents Xiii

4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Gauss-Jordan Method

Jacobi Method

The Householder Factorization
Symmetric Matrix Eigenvalue Problems

Jacobi Method

Householder Reduction to Tridiagonal Form
Sturn Sequence

OR Method

Example Problems and Solutions

References

Problems

OPTIMIZATION

Introduction

Conjugate Gradient Methods
Newton’s Method

The Concept of Quadratic Convergence
Powell’s Method

Fletcher-Reeves Method

Hooke and Jeeves Method
Interior Penalty Function Method
Example Problems and Solutions
References

Problems

DIRECT NUMERICAL INTEGRATION METHODS

Introduction

Single-degree of Freedom System
Multi-degree of Freedom System
Explicit Schemes

Implicit Schemes

Example Problems and Solutions
References

Problems

ENGINEERING MECHANICS
Introduction

Newtonian Mechanics

Newton’s Laws of Motion

Resultants of Coplanar Force Systems
Resultants of Non-coplanar Force Systems
Equilibrium of Coplanar Force Systems
Equilibrium of Non-coplanar Force System
Trusses

204
205
207
208
208
210
211
211
214
254
259

261-318
261
261
262
263
266

267
267
268
270
316
316

319-387
319
319
322
323
328
337
381
386

389-548
389
389
389
390
391
392
394
394

xiy Contents
7.9 Analysis of Beams 395
7.10 Friction 395
7.11 First Moments and Centroids 396
7.12 Virtual Work 397
7.13 Kinematics of a Particle 398
7.14 D’Alembert’s Principle 402
7.15 Kinematics of a Rigid Body in Plane Motion 402
7.16 Moments of Inertia 404
7.17 Dynamics of a Rigid Body in Plane Motion 406
7.18 Work and Energy 408
7.19 Impulse and Momentum 409
7.20 Three-dimensional Mechanics 411
721 Example Problems and Solutions 413
References 526
Problems 527
8. MECHANICAL VIBRATIONS 549-645
8.1 Introduction 549
8.2 Classification of Vibrations 549
8.3 Elementary Parts of Vibrating Systems 550
8.4 Discrete and Continuous Systems 552
8.5 Vibration Analysis 552
8.6 Components of Vibrating Systems 554
8.7 Free Vibration of Single Degree of Freedom Systems 556
8.8 Forced Vibration of Single-degree of Freedom Systems 563
8.9 Harmonic Functions 571
8.10 Two-degrees of Freedom Systems 573
8.11 Multi-degree of Freedom Systems 577
8.12 Free Vibration of Damped Systems 581
8.13 Proportional Damping 581
8.14 General Viscous Damping 582
8.15 Harmonic Excitations 582
8.16 Modal Analysis for Undamped Systems 583
8.17 Lagrange’s Equation 583
8.18 Principle of Virtual Work 584
8.19 D’Alembert’s Principle 585
8.20 Lagrange’s Equations of Motion 585
8.21 Variational Principles 585
8.22 Hamilton’s Principle 585
8.23 Example Problems and Solutions 586
References 634
Problems 638
Bibliography 647-648
Index 649-665

CHAPTER

MATLAB BASICS

1.1 INTRODUCTION

This chapter is a brief introduction to MATLAB (an abbreviation of MATrix LABoratory) basics, registered
trademark of computer software, version 4.0 or later developed by the Math Works Inc. The software is widely
used in many of science and engineering fields. MATLAB is an interactive program for numerical computation
and data visualization. MATLAB is supported on Unix, Macintosh and Windows environments. For more
information on MATLAB, contact The MathWorks.Com. A Windows version of MATLAB is assumed here.
The syntax is very similar for the DOS version.

MATLAB integrates mathematical computing, visualization, and a powerful language to provide a flexible
environment for technical computing. The open architecture makes it easy to use MATLAB and its companion
products to explore data, create algorithms and create custom tools, that provide early insights and competitive
advantages.

Known for its highly optimized matrix and vector calculations, MATLAB offers an intuitive language for
expressing problems and their solutions both mathematically and visually. Typical uses include:

e Numeric computation and algorithm development.

e Symbolic computation (with the built-in Symbolic Math functions).
e Modeling, simulation and prototyping.

e Data analysis and signal processing.

e Engineering graphics and scientific visualization.

In this chapter, we will introduce the MATLAB environment. We will learn how to create, edit, save, run and
debug M-files (ASCII files with series of MATLAB statements). We will see how to create arrays (matrices
and vectors), and explore the built-in MATLAB linear algebra functions for matrix and vector multiplication,
dot and cross products, transpose, determinants and inverses, and for the solution of linear equations.
MATLAB is based on the language C, but is generally much easier to use. We will also see how to program
logic constructs and loops in MATLAB, how to use subprograms and functions, how to use comments (%)
for explaining the programs and tabs for easy readability, and how to print and plot graphics both two and
three dimensional. MATLAB’s functions for symbolic mathematics are presented. Use of these functions to
perform symbolic operations, to develop closed form expressions for solutions to algebraic equations, ordinary

2

MATLAB: An Introduction with Applications

differential equations, and system of equations was presented. Symbolic mathematics can also be used to
determine analytical expressions for the derivative and integral of an expression.

1.1.1 Starting and Quitting MATLAB

To start MATLAB click on the MATLAB icon or type in MATLAB, followed by pressing the enter or return
key at the system prompt. The screen will produce the MATLAB prompt >> (or EDU >>), which indicates that
MATLAB is waiting for a command to be entered.

In order to quit MATLAB, type quit or exit after the prompt, followed by pressing the enter or return key.

1.1.2 Display Windows

MATLAB has three display windows. They are
1. A Command Window which is used to enter commands and data to display plots and graphs.

2. A Graphics Window which is used to display plots and graphs.

3. An Edit Window which is used to create and modify M-files. M-files are files that contain a
program or script of MATLAB commands.

1.1.3 Entering Commands

Every command has to be followed by a carriage return <cr> (enter key) in order that the command can be
executed. MATLAB commands are case sensitive and /ower case letters are used throughout.

To execute an M-file (such as Project 1.m), simply enter the name of the file without its extension (as in
Project 1).

1.1.4 MATLAB Expo

In order to see some of the MATLAB capabilities, enter the demo command. This will initiate the MATLAB
EXPO. MATLAB EXPO is a graphical demonstration environment that shows some of the different types of
operations which can be conducted with MATLAB.

1.1.5 Abort

In order to abort a command in MATLAB, hold down the control key and press ¢ to generate a local abort with
MATLAB.

1.1.6 The Semicolon (;)

If a semicolon (;) is typed at the end of a command, the output of the command is not displayed.

1.1.7 Typing %
When per cent symbol (%) is typed in the beginning of a line, the line is designated as a comment. When the
enter key is pressed, the line is not executed.

1.1.8 The clc Command

Typing clc command and pressing enter cleans the command window. Once the c/c command is executed, a
clear window is displayed.

1.1.9 Help

MATLAB has a host of built-in functions. For a complete list, refer to MATLAB user’s guide or refer to the
on-line Help. To obtain help on a particular topic in the list, e.g., inverse, type help inv.

MATLAB Basics

1.1.10 Statements and Variables

Statements have the form
>>variable = expression
The equals (“=") sign implies the assignment of the expression to the variable. For instance, to entera 2 x 2
matrix with a variable name 4, we write
>>A == [12; 3 4] {ret)
The statement is executed after the carriage return (or enter) key is pressed to display
A=
1 2
3 4

1.2 ARITHMETIC OPERATIONS

The symbols for arithmetic operations with scalars are summarized below in Table 1.1.

Table 1.1
Arithmetic operation Symbol Example
Addition + 6+3=9
Subtraction - 6-3=3
Multiplication * 6*3=18
Right division / 6/3=2
Left division \ 6\3=3/6=1/2
Exponentiation A 673=63=216

1.3 DISPLAY FORMATS

MATLAB has several different screen output formats for displaying numbers. These formats can be found by
typing the help command: help format in the Command Window. A few of these formats are shown in Table 1.2
for 2m.

Table 1.2 Display formats

Command Description Example

format short Fixed-point with 4 >>351/7

decimal digits ans = 50.1429
format long Fixed-point with 14 >>351/7

decimal digits ans = 50.14285714285715
format short e | Scientific notation with 4 | >>351/7

decimal digits ans =5.0143e + 001
format long e | Scientific notation with 15| >>351/7

decimal digits ans = 5.014285714285715e001
format short g | Best of 5 digit fixed or >>351/7

floating point ans =50.143

Contd...

4

MATLAB: An Introduction with Applications

formatlongg |Bestof 15 digit fixedor |>>351/7
floating point ans = 50.1428571428571
format bank Two decimal digits >>351/7
ans = 50.14

format compact |Eliminates empty lines to allow more lines with information
displayed on the screen

format loose Adds empty lines (opposite of compact)

1.4 ELEMENTARY MATH BUILT-IN FUNCTIONS

MATLAB contains a number of functions for performing computations which require the use of logarithms,
elementary math functions and trigonometric math functions. List of these commonly used elementary
MATLAB mathematical built-in functions are given in Tables 1.3 to 1.8.

Table 1.3 Common math functions

Function Description

abs(x) Computes the absolute value of x.

sqrt(x) Computes the square root of x.

round(x) | Rounds x to the nearest integer.

fix(x) Rounds (or truncates) x to the nearest integer toward 0.

floor(x) | Rounds x to the nearest integer toward —oo.

ceil(x) Rounds x to the nearest integer toward oe.

sign(x) Returns a value of —1 if x is less than 0, a value of O if x equals 0,

and a value of 1 otherwise.

rem(x,y) | Returns the remainder of x/y. for example, rem(25, 4) is 1, and
rem(100, 21) is 16. This function is also called a modulus function.

exp(x) Computes e*, where e is the base for natural logarithms, or
approximately 2.718282.
log(x) Computes In x, the natural logarithm of x to the base e.

log10(x) | Computes log;o X, the common logarithm of x to the base 10.

Table 1.4 Exponential functions

Function Description
exp(x) Exponential (e¥)
log(x) Natural logarithm
log10(x) Base 10 logarithm
sqrt(x) Square root

MATLAB Basics

Table 1.5 Trigonometric and hyperbolic functions

Function Description
sin(x) Computes the sine of x, where x is in radians.
cos(x) Computes the cosine of x, where x is in radians.
tan(x) Computes the tangent of x, where x is in radians.
asin(x) | Computes the arcsine or inverse sine of x, where x must be between —1 and 1.
The function returns an angle in radians between —n/2 and m/2.
acos(x) | Computes the arccosine or inverse cosine of x, where x must be between
—1 and 1. The function returns an angle in radians between 0 and .
atan(x) | Computes the arctangent or inverse tangent of x. The function returns an
angle in radians between —m/2 and m/2.
atan2(y,x) Computes the arctangent or inverse tangent of the value y/x. The function
returns an angle in radians that will be between —it and 7, depending on the
signs of x and y.
eX—e*
sinh(x) | Computes the hyperbolic sine of x, which is equal to 2
X +e—X
cosh(x) | Computes the hyperbolic cosine of x, which is equal to
. S sinhx
tanh(x) | Computes the hyperbolic tangent of x, which is equal to =
coshx
asinh(x) | Computes the inverse hyperbolic sine of x, which is equal to
ln(x+\/x2 1)
acosh(x) | Computes the inverse hyperbolic cosine of x, which is equal to
ln(x+\/x2 -1)
. . D I+x
atanh(x) | Computes the inverse hyperbolic tangent of x, which is equal to In T—x
-X
for x| < 1.
Table 1.6 Round-off functions
Function Description Example
round(x) | Round to the nearest integer >> round(20/6)
ans =3
fix(x) Round towards zero >> fix(13/6)
ans =2
ceil(x) Round towards infinity >> ceil(13/5)
ans =3
floor(x) | Round towards minus infinity >> floor(—10/4)
ans = —3
rem(x,y) | Returns the remainder after x is divided by y >>rem(14,3)
ans =2
sign(x,y) | Signum function. Returns 1 if x>0, -1 if x <0, | >> sign(7)
and 0 if x =0. ans = 1

MATLAB: An Introduction with Applications

Table 1.7 Complex number functions

Function Description

conj(x) |Computes the complex conjugate of the complex number x. Thus, if
x is equal to a + ib, then conj(x) will be equal to a — ib.

angle(x) | Computes the real portion of the complex number x.

real(x) |Computes the imaginary portion of the complex number x.

imag(x) |Computes the absolute value of magnitude of the complex number x.
abs(x) |Computes the angle using the value of atan2(imag(x), real(x)); thus,
the angle value is between —r and .

Table 1.8 Arithmetic operations with complex numbers

Operation Result
¢t (ar +ay) +i(b; + by)
c tc (a1 —ay) +i(by—by)
e (a1ay = biby) + i(a1by — azby)
a aa, bb . ab b
l
2 a b a b
1 «lalz b12 (magnitude or absolute value of ¢;)
c* a; — iby (conjugate of ¢;)
(Assume that ¢; = a; + ib; and ¢, = a; + ib,.)

1.5 VARIABLE NAMES

A variable is a name made of a letter or a combination of several letters and digits. Variable names can be up to
63 (in MATLAB 7) characters long (31 characters on MATLAB 6.0). MATLAB is case sensitive. For instance,
XX, Xx, xX and xx are the names of four different variables. It should be noted here that not to use the names of
a built-in functions for a variable. For instance, avoid using: sin, cos, exp, sqrt, ..., etc. Once a function name is
used to define a variable, the function cannot be used.

1.6 PREDEFINED VARIABLES

MATLAB includes a number of predefined variables. Some of the predefined variables that are available to use
in MATLAB programs are summarized in Table 1.9.

MATLAB Basics 7
Table 1.9 Predefined variables
Predefined variable Description
in MATLAB
ans Represents a value computed by an expression but not
stored in variable name.
pi Represents the number 7.
eps Represents the floating-point precision for the computer
being used. This is the smallest difference between two
numbers.
inf Represents infinity which for instance occurs as a result of

a division by zero. A warning message will be displayed or
the value will be printed as oo.

i Defined as v/~1, which is: 0 + 1.0000:.
i Same as i.
NaN Stands for Not a Number. Typically occurs as a result of an

expression being undefined, as in the case of division of
zero by zero.

clock Represents the current time in a six-element row vector
containing year, month, day, hour, minute, and seconds.
date Represents the current date in a character string format.

1.7 COMMANDS FOR MANAGING VARIABLES

Table 1.10 lists commands that can be used to eliminate variables or to obtain information about variables that
have been created. The procedure is to enter the command in the Command Window and the Enter key is to be
pressed.

Table 1.10 Commands for managing variables

Command Description

clear Removes all variables from the memory.

clear x,y, z Clears/removes only variables x, y and z from the memory.

who Lists the variables currently in the workspace.

whos Displays a list of the variables currently in the memory and their
size together with information about their bytes and class.

1.8 GENERAL COMMANDS

In Tables 1.11 to 1.15 the useful general commands on on-line help, workspace information, directory information
and general information are given.

8 MATLAB: An Introduction with Applications

Table 1.11 On-line help

Function Description
help Lists topics on which help is available.
helpwin Opens the interactive help window.
helpdesk Opens the web browser based help facility.
help topic Provides help on fopic.
lookfor string | Lists help topics containing string.
demo Runs the demo program.

Table 1.12 Workspace information

Function Description
who Lists variables currently in the workspace.
whos Lists variables currently in the workspace with their size.
what Lists m-, mat- and mex-files on the disk.
clear Clears the workspace, all variables are removed.
clear x y z Clears only variables x, y, and z.
clear all Clears all variables and functions from workspace.
mlock fin Locks function fun so that clear cannot remove it.
munlock fin | Unlocks function fun so that clear can remove it.
cle Clears command window, command history is lost.
home Same as cle.
clf Clears figure window.

Table 1.13 Directory information

Function Description

pwd Shows the current working directory.

cd Changes the current working directory.

dir Lists contents of the current directory.

Is Lists contents of the current directory, same as dir.
path Gets or sets MATLAB search path.

editpath | Modifies MATLAB search path.

copyfile | Copies a file.

mkdir Creates a directory.

Table 1.14 General information

Function Description

computer | Tells you the computer type you are using.

clock Gives you wall clock time and date as a vector.

date Tells you the date as a string.

more Controls the paged output according to the screen size.

ver Gives the license and the version information about MATLAB installed on your computer.
bench Benchmarks your computer on running MATLAB compared to other computers.

MATLAB Basics 9
Table 1.15 Termination
Function Description
¢ (Control-c) | Local abort, kills the current command execution.
quit Quits MATLAB.
exit Same as quit.

1.9 ARRAYS

An array is a list of numbers arranged in rows and/or columns. A one-dimensional array is a row or a column
of numbers and a two-dimensional array has a set of numbers arranged in rows and columns. An array
operation is performed element-by-element.

1.9.1 Row Vector

A vector is a row or column of elements.

In a row vector, the elements are entered with a space or a comma between the elements inside the square
brackets. For example,x=[7 —1 2 -5 8].

1.9.2 Column Vector

In a column vector, the elements are entered with a semicolon between the elements inside the square
brackets. For example, x=[7; —1; 2; -5; 8].

1.9.3 Matrix

A matrix is a two-dimensional array which has numbers in rows and columns. A matrix is entered row-wise with
consecutive elements of a row separated by a space or a comma, and the rows separated by semicolons or
carriage returns. The entire matrix is enclosed within square brackets. The elements of the matrix may be real
numbers or complex numbers. For example, to enter the matrix,

1 3 -4
A:
0 -2 8
The MATLAB input command is

A=1[13 -4;0 -2 8]

Similarly, for complex number elements of a matrix B

—5x In2x+7sin3y
3i 5-13i

The MATLAB input command is
B=[-5*x log(2*x) + 7*sin(3*y); 3i 5 - 131i]

10 MATLAB: An Introduction with Applications

1.9.4 Addressing Arrays

A colon can be used in MATLAB to address a range of elements in a vector or a matrix.

1.9.4.1 Colon for a vector

Va(:) —refers to all the elements of the vector Va (either a row or a column vector).
Va(m:n) — refers to elements m through » of the vector Va.
For instance,
>> V=[2 5 -1 11 8 4 7 -3 11]
>> u=V(2:8)
u=5-111 8 4 7 -3 11

1.9.4.2 Colon for a matrix

Table 1.16 gives the use of a colon in addressing arrays in a matrix.

Table 1.16 Colon use for a matrix

Command Description
A(:, n) Refers to the elements in all the rows of a column n of the matrix A4.
A(n,) Refers to the elements in all the columns of row # of the matrix A.

A(:, m:n) |Refers to the elements in all the rows between columns m and n of
the matrix 4.

A(m:n,:) |Refers to the elements in all the columns between rows m and n of
the matrix 4.

A(m:n, p:q) |Refers to the elements in rows m through n and columns p through
q of the matrix 4.

1.9.5 Adding Elements to a Vector or a Matrix

A variable that exists as a vector or a matrix can be changed by adding elements to it. Addition of elements is
done by assigning values of the additional elements, or by appending existing variables. Rows and/or columns
can be added to an existing matrix by assigning values to the new rows or columns.

1.9.6 Deleting Elements
An element or a range of elements of an existing variable can be deleted by reassigning blanks to these

elements. This is done simply by the use of square brackets with nothing typed in between them.

1.9.7 Built-in Functions

Some of the built-in functions available in MATLAB for managing and handling arrays as listed in
Table 1.17.

MATLAB Basics 11

Table 1.17 Built-in functions for handling arrays

Function Description Example
length(A) Returns the number of >>A4=[59 2 4]
elements in the vector A. >> length(4)
ans= 4
size(A) Returns a row vector [m, n], | >>4=[230811;617571]
where m and n are the size | 4=
m x n of the array A. 230811
6175 7 1
>> size(A)
ans= 2 5

reshape(A, m, n) | Rearrange a matrix 4 that >>A4=[314;907]
has » rows and s columns to | 4 =

have m rows and n columns. 314
r times s must be equal to m 907
times 7. >> B =reshape(4, 3, 2)
B=
30
94
17
diag(v) When v is a vector, creates a| >>v=[321];
square matrix with the >> 4 = diag(v)
elements of v in the A=
diagonal 300
020
001
diag(A) When 4 is a matrix, creates | >>A4=[183;426;783]

a vector from the diagonal | 4=
elements of A4.

N b=
oo N o0

3
6
3
>> vec = diag(4)

vee =
1

3

1.10 OPERATIONS WITH ARRAYS

We consider here matrices that have more than one row and more than one column.

1.10.1 Addition and Subtraction of Matrices

The addition (the sum) or the subtraction (the difference) of the two arrays is obtained by adding or subtracting
their corresponding elements. These operations are performed with arrays of identical size (same number of
rows and columns).

12

MATLAB: An Introduction with Applications

For example, if 4 and B are two arrays (2 x 3 matrices).

A=[a11 app a13:| and Bz[bn by, b13:|

ay ayp ay byy by b3
Then, the matrix addition (4 + B) is obtained by adding 4 and B is
[a11+b11 ay +byp a13+b13:|

ay +by ayp +by ay;+by

1.10.2 Dot Product

The dot product is a scalar computed from two vectors of the same size. The scalar is the sum of the products
of the values in corresponding positions in the vectors.
For n elements in the vectors 4 and B:

n
dot product=4+ B = zai b;
i=1
dot(A, B): Computes the dot product of 4 and B. If 4 and B are matrices, the dot product is a row vector
containing the dot products for the corresponding columns of 4 and B.

1.10.3 Array Multiplication

The value in position ¢; ; of the product C of two matrices, 4 and B, is the dot product of row i of the first matrix
and column of the second matrix.

n

Cij = Zai,k b,

k=1

1.10.4 Array Division

The division operation can be explained by means of the identity matrix and the inverse matrix operation.

1.10.5 Identity Matrix

An identity matrix is a square matrix in which all the diagonal elements are 1’s, and the remaining elements are
0’s. If a matrix A4 is square, then it can be multiplied by the identity matrix, /, from the left or from the right:

AI=I4A=4

1.10.6 Inverse of a Matrix
The matrix B is the inverse of the matrix 4 when the two matrices are multiplied and the product is an identity
matrix. Both matrices 4 and B must be square and the order of multiplication can be AB or BA.

AB=BA=1

1.10.7 Transpose
The transpose of a matrix is a new matrix in which the rows of the original matrix are the columns of the new

matrix. The transpose of a given matrix 4 is denoted by 47. In MATLAB, the transpose of the matrix 4 is
denoted by 4”.

MATLAB Basics 13

1.10.8 Determinant
A determinant is a scalar computed from the entries in a square matrix. For a 2 x 2 matrix 4, the determinant is

|| = ayy ap —ay ay
MATLAB will compute the determinant of a matrix using the det function:

det(A): Computes the determinant of a square matrix 4.

1.10.9 Array Division
MATLAB has two types of array division, which are the left division and the right division.

1.10.10 Left Division

The left division is used to solve the matrix equation Ax = B where x and B are column vectors. Multiplying
both sides of this equation by the inverse of 4, 4!, we have

A'Ax=A4"B
or Ix=x=A"B
Hence x=A"'B
In MATLAB, the above equation is written by using the left division character:
x=A\B

1.10.11 Right Division

The right division is used to solve the matrix equation x4 = B where x and B are row vectors. Multiplying both
sides of this equation by the inverse of 4, 4!, we have

x+AA ' =B A
or x=B A"
In MATLAB, this equation is written by using the right division character:
x=B/A

1.10.12 Eigenvalues and Eigenvectors
Consider the following equation:

AX=\X (1.1)
where 4 is an n X n square matrix, X is a column vector with n rows and A is a scalar.

The values of A for which X are non-zero are called the eigenvalues of the matrix 4, and the corresponding
values of X are called the eigenvectors of the matrix A.

Equation (1.1) can also be used to find the following equation:

(A-ADX=0 ~(12)
where / is an n x n identity matrix. Equation (1.2) corresponding to a set of homogeneous equations and has
non-trivial solutions only if the determinant is equal to zero, or

|[A-AI1=0 -(1.3)
Equation (1.3) is known as the characteristic equation of the matrix 4. The solution to Eq.(1.3) gives the
eigenvalues of the matrix A4.

14

MATLAB: An Introduction with Applications

MATLAB determines both the eigenvalues and eigenvectors for a matrix 4.

eig(A): Computes a column vector containing the eigenvalues of 4.

[Q, d] =eig(A): Computes a square matrix Q containing the eigenvectors of 4 as columns and a square matrix
d containing the eigenvlaues (A) of 4 on the diagonal. The values of Q and d are such that Q * Q is the identity
matrix and 4*X equals A times X.

Triangular factorization or lower-upper factorization: Triangular or lower-upper factorization expresses a
square matrix as the product of two triangular matrices—a lower triangular matrix and an upper triangular
matrix. The lu function in MATLAB computes the LU factorization.

[L, Ul =lu(A): Computes a permuted lower triangular factor in L and an upper triangular factor in U such that
the product of L and U is equal to 4.

QR factorization: The QR factorization method factors a matrix 4 into the product of an orthonormal matrix
and an upper-triangular matrix. The qr function is used to perform the QR factorization in MATLAB.

[Q, R] =qr(A): Computes the values of O and R such that 4 = OR. Q will be an orthonormal matrix, and R will
be an upper triangular matrix..
For a matrix 4 of size m X n, the size of Q is m X m, and the size of R is m X n.
Singular Value Decomposition (SVD): Singular value decomposition decomposes a matrix 4 (size m X n) into
a product of three matrix factors.

A=USV
where U and V are orthogonal matrices and S'is a diagonal matrix. The size of U'is m X m, the size of Visn x n,

and the size of S'is m % n. The values on the diagonal matrix S are called singular values. The number of non-
zero singular values is equal to the rank of the matrix.

The SVD factorization can be obtained using the svd function.

[U, S, V] =svd(A): Computes the factorization of 4 into the product of three matrices, USV, where U and V are
orthogonal matrices and S is a diagonal matrix.

svd(A): Returns the diagonal elements of S, which are the singular values of 4.

1.11 ELEMENT-BY-ELEMENT OPERATIONS

Element-by-element operations can only be done with arrays of the same size. Element-by-element multiplication,
division and exponentiation of two vectors or matrices is entered in MATLAB by typing a period in front of
the arithmetic operator. Table 1.18 lists these operations.

Table 1.18 Element-by-element operations

Arithmetic operators

Matrix operators Array operators
+ Addition + Addition
— Subtraction — Subtraction
* Multiplication ** Array multiplication
~ Exponentiation *~ Array exponentiation
/ Right division */ Array right division
\ Left division *\ Array left division

MATLAB Basics

15

1.11.1 Built-in Functions for Arrays
Table 1.19 lists some of the many built-in functions available in MATLAB for analysing arrays.
Table 1.19 MATLAB built-in array functions

largest element of each column
of A.

Function Description Example
mean(A) If 4 is a vector, returns the mean | >>A=[3 7 2 16];
value of the elements >> mean(4)
ans =7
C =max(A) If 4 is a vector, C'is the largest >>A4=[3721695181304];
element in 4. If 4 is a matrix, C | >> C=max(4)
is a row vector containing the Cc=18

[d, n] = max(A)

If 4 is a vector, d is the largest
element in 4, n is the position of
the element (the first if several
have the max value).

>> [d, n] = max(4)
d=18
n="17

min(A)

[d, n] = min(A)

The same as max(A), but for the
smallest element.

The same as [d, n] = max(A),
but for the smallest element.

>>A4=[3 7 2 16];
>> min(A4)
ans =2

sum(A) If A4 is a vector, returns the sum >>A=[37 2 16];
of the elements of the vector. >> sum(A4)
ans =28
sort(A) If 4 is a vector, arranges the >>A4=[37 2 16];
elements of the vector in >> sort(A4)
ascending order. ans= 2 3 7 16
median(A) If 4 is a vector, returns the >>A4=[3 7 2 16];
median value of the elements of | >> median(4)
the vector. ans =5
std(A) If A4 is a vector, returns the >>A4=[3 7 2 16];
standard deviation of the >> std(4)
elements of the vector. ans = 6.3770
det(A) Returns the determinant of a >>A4=[12;3 4];
square matrix A4. >> det(4)
ans =_—2
dot(a, b) Calculates the scalar (dot) >>q=[56 7],
product of two vectors a and b. >>p=[4 3 2];
The vector can each be row or >> dot(a,b)
column vectors. ans = 52
cross(a, b) Calculates the cross product of >>a=[56 7]
two vectors a and b, (a X b). The | >>b=1[4 3 2];
two vectors must have 3 elements.| >> cross(a, b)
ans=-9 18 -9

Contd...

16

MATLAB: An Introduction with Applications

inv(A) Returns the inverse of a square >>a=[123;468;-123];
matrix 4. >> inv(4)

ns =
—0.5000 0.0000-0.5000
-5.0000 1.5000 1.0000
3.5000 -1.0000-0.5000

1.12 RANDOM NUMBERS GENERATION

There are many physical processes and engineering applications that require the use of random numbers in
the development of a solution.

MATLAB has two commands rand and rand n that can be used to assign random numbers to variables.
The rand command: The rand command generates uniformly distributed over the interval [0, 1]. A seed value
is used to initiate a random sequence of values. The seed value is initially set to zero. However, it can be
changed with the seed function.

The command can be used to assign these numbers to a scalar, a vector or a matrix as shown in Table 1.20.

Table 1.20 The rand command

Command Description Example
rand Generates a single random | >> rand
number between 0 and 1. ans = (0.9501
rand(1, n) Generates an n elements row | >> g =rand(1, 3)

vector of random numbers a= 04565 0.0185 0.8214
between 0 and 1.

rand(n) Generates an # X n matrix >>p =rand(3)
with random numbers b=
between 0 and 1. 0.7382 0.9355 0.8936

0.1763 0.9165 0.0579
0.4057 0.4103 0.3529

rand(m, n) Generates an m X n matrix | >> ¢ =rand(2, 3)
with random numbers c=
between 0 and 1. 0.2028 0.6038 0.1988

0.1987 0.2722 0.0153
randperm (n) | Generates a row vector with | >> randperm(7)

n elements that are random | ans =

permutation of integers 1 5247163
through 7.

1.12.1 The Random Command

MATLAB will generate Gaussian values with a mean of zero and a variance of 1.0 if a normal distribution is
specified. The MATLAB functions for generating Gaussian values are as follows:

randn(n): Generates an # X n matrix containing Gaussian (or normal) random numbers with a mean of 0 and a
variance of 1.

randn(m, n): Generates an /71 X n matrix containing Gaussian (or normal) random numbers with a mean of 0 and
a variance of 1.

MATLAB Basics 17

1.13 POLYNOMIALS

A polynomial is a function of a single variable that can be expressed in the following form:

f(x) = a()xn + alxn_1 + azx”_z +ot an—lx1 + a,
where the variable is x and the coefficients of the polynomial are represented by the values a, a,, ... and so
on. The degree of a polynomial is equal to the largest value used as an exponent.

A vector represents a polynomial in MATLAB. When entering the data in MATLAB, simply enter each
coefficient of the polynomial into the vector in descending order. For example, consider the polynomial

553+ 7s* + 25— 65+ 10
To enter this into MATLAB, we enter this as a vector as

>>x =[5 7 0 2 -6 10]

X =
57 02 -6 10

It is necessary to enter the coefficients of all the terms.
MATLAB contains functions that perform polynomial multiplication and division, which are listed below:
conv(a,b): Computes a coefficient vector that contains the coefficients of the product of polynomials
represented by the coefficients in a and b. The vectors a and b do not have to be the same size.
[q, r] = deconv(n, d): Returns two vectors. The first vector contains the coefficients of the quotient and the
second vector contains the coefficients of the remainder polynomial.
The MATLAB function for determining the roots of a polynomial is the roots function:
root(a): Determines the roots of the polynomial represented by the coefficient vector a.
The roots function returns a column vector containing the roots of the polynomial; the number of roots is
equal to the degree of the polynomial. When the roots of a polynomial are known, the coefficients of the
polynomial are determined. When all the linear terms are multiplied, we can use the poly function:
poly(r): Determines the coefficients of the polynomial whose roots are contained in the vector r.
The output of the function is a row vector containing the polynomial coefficients.
The value of a polynomial can be computed using the polyval function, polyval (a, x). It evaluates a polynomial
with coefficients a for the values in x. The result is a matrix the same size as x. For instance, to find the value
of the above polynomial ats =2,

>>x = polyval ([5 70 2 -6 10], 2)

X =
278
To find the roots of the above polynomial, we enter the command roots (a) which determines the roots of the
polynomial represented by the coefficient vector a.
>>roots ([5 7 0 2 -6 10])

ans =
-1.8652
-0.4641 +1.08321
-0.4641 - 1.08321
0.6967 + 0.53551
0.6967 - 0.53551

18

MATLAB: An Introduction with Applications

x=[57 0 2 -6 10]
x=570 2 -6 10
r

>> ¥ = roots (x)
Tr =
-1.8652
-0.4641 + 1.08321
-0.4641 - 1.08321
0.6967 + 0.53551
0.6967 — 0.53551

To multiply two polynomials together, we enter the command conv.
The polynomials are: x =2x+ 5 and y =x>+3x + 7
>>X = [2 5];
>>y=1[1 3 7];
>>z = conv (x, y)
z= 2 11 29 35
To divide two polynomials, we use the command deconv.
z=1[2112935]; x=[25]
>> [g, t] = deconv (z, x)
g=1 3 7
t 0 0 0 0

1.14 SYSTEM OF LINEAR EQUATIONS

A system of equations is non-singular if the matrix A containing the coefficients of the equations is non-
singular. A system of non-singular simultaneous linear equations (AX = B) can be solved using two methods:
(a) Matrix Division Method.
(b) Matrix Inversion Method.

1.14.1 Matrix Division

The solution to the matrix equation AX = B is obtained using matrix division, or X = A/B. The vector X then
contains the values of x.

1.14.2 Matrix Inverse
For the solution of the matrix equation AX = B, we premultiply both sides of the equation by A~!.

ATTAX=A"B
or IX=A"'B
where I is the identity matrix.
Hence X=A"B

In MATLAB, we use the command x = inv (A)“B. Similarly, for XA = B, we use the command x =B = inv (A).

MATLAB Basics 19

The basic computational unit in MATLAB is the matrix. A matrix expression is enclosed in square brackets,
[] Blanks or commas separate the column elements, and semicolons or carriage returns separate the rows.
>>A=[1 23 4; 56 7 8; 9 10 11 12]
A=
1 2 3 4
5 6 7 8
9 10 11 12
The transpose of a simple matrix or a complex matrix is obtained by using the apostrophe key

>>B = A"
B=
1 5 9
2 6 10
3 7 11
4 8 12
Matrix multiplication is accomplished as follows:
>>C = A*B
C=

30 70 110

70 174 278
110 278 446
>>C = B*A
C =

107 122 137 152
122 140 158 176
137 158 179 200
152 176 200 224

The inverse of a matrix D is obtained as
>>sD=[1 2; 3 4]

D=

1 2

3 4
>>E = inv (D)
E =

-2.0000 1.0000
1.5000 -0.5000

Similarly, its eigenvalue is
>>eig (D)
ans =
-0.3723
5.3723
Matrix operations require that the matrix dimensions be compatible. If 4 is an# X m and B is a p x r, then
A+ Bisallowed only if n = p and m = r. Similarly, matrix product 4 * B is allowed only if m =p.

20

MATLAB: An Introduction with Applications

Example E1.1: Consider the two matrices:

1 01 7 4 2
A=[2 3 4 and B=[3 5 6
-1 6 7 -1 2 1
Using MATLAB, determine the following:
(@ A+B
(b) AB
(€ A?
d) AT
() B!
(f) BTAT

(g) A*+B2-AB
(h) determinant of A, determinant of B and determinant of AB.

Solution:
> A = [101; 2 3 4; -1 6 7]
A =
1 0 1
2 3 4
-1 6 7
>> B = [74 2; 356; -1 2 1]
B =
7 4 2
3 5
-1 2 1

C =
8 4 3
5 8 10
-2 8 8

D =
6 6 3
19 31 26
4 40 41

(¢ >> E = A"2 = RA?

0
4 33 42
4 60 72

MATLAB Basics

21

@

©

N

@)

(h)

>> % Let F= transpose of A

>> F=A"
F =
1 2 -1
0 3 6
1 4 7
>>H = inv (B)
H=
0.1111 0.0000 -0.2222
0.1429 -0.1429 0.5714
-0.1746 0.2857 -0.3651
>>J=B"'*A'
J =
6 19 4

6 31 40

3 26 41

>>K=A"2 + B®2 - A*B
K =

53 52 45

15 51 58

-2 28 42

det (A) =12
det (B) =-63
det (A*B)=-756

Example E1.2: Determine the eigenvalues and eigenvectors of 4 and B using MATLAB

4 2 3

1 2 3
A=|-1 1 3 and B=|8 7 6
5 31

2 5 7

Solution:

% Determine the eigenvalues and eigenvectors
A=[42-3;-113;257]
A=
4 2 -3
-1 1 3
2 5 7
eig (Aa)
ans = 0.5949
3.0000
8.4051

22

MATLAB: An Introduction with Applications

lamda = eig(A)
lamda =0.5949

3.0000
8.4051
[V, D] =eig (A7)
vV =
-0.6713 0.9163 -0.3905
0.6713 -0.3984 0.3905
-0.3144 0.0398 0.8337
D=
0.5949 0 0
0 3.0000 0
0 0 8.4051

Example E1.3: Determine the values of x, y and z for the following set of linear algebraic equations:
Xy —3x3=-5
2x,+3xy—x3=7
4x,+5x, - 2x;=10
Solution:
Here
01 -3 5 X
A=12 3 —-1|,B=|7|and X=X
4 5 -2 10 X3

AX=B
ATAX=A"1B
IX=A1B
or X=A"B
>>A=[01-3;23-1;45-2];
>>B = [-5; 7; 10]
>>xX =1inv (A) *B
X =
-1.0000
4.0000
3.0000
>> check = A*x
check =
-5
7
10
% Alternative method
>>x = A\B
X =
-1
4
3

MATLAB Basics 23

1.15 SCRIPT FILES

A script is a sequence of ordinary statements and functions used at the command prompt level. A script is
invoked the command prompt level by typing the file-name or by using the pull down menu. Scripts can also
invoke other scripts.

The commands in the Command Window cannot be saved and executed again. Also, the Command
Window is not interactive. To overcome these difficulties, the procedure is first to create a file with a list of
commands, save it and then run the file. In this way, the commands contained are executed in the order they

are listed when the file is run. In addition, as the need arises, one can change or modify the commands in the
file; the file can be saved and run again. The files that are used in this fashion are known as script files. Thus,
a script file is a text file that contains a sequence of MATLAB commands. Script file can be edited (corrected
and/or changed) and executed many times.

1.15.1 Creating and Saving a Script File

Any text editor can be used to create script files. In MATLAB, script files are created and edited in the Editor/
Debugger Window. This window can be opened from the Command Window. From the Command Window,
select File, New and then M-file. Once the window is open, the commands of the script file are typed line by
line. The commands can also be typed in any text editor or word processor program and then copied and
pasted in the Editor/Debugger Window. The second type of M-files is the function file. Function file enables
the user to extend the basic library functions by adding ones own computational procedures. Function
M-files are expected to return one or more results. Script files and function files may include reference to other
MATLAB toolbox routines.

MATLAB function file begins with a header statement of the form:
function (name of result or results) = name (argument list)

Before a script file can be executed it must be saved. All script files must be saved with the extension “.m”.
MATLAB refers to them as M-files. When using MATLAB M-files editor, the files will automatically be saved
with a “.m” extension. If any other text editor is used, the file must be saved with the “.m” extension, or
MATLAB will not be able to find and run the script file. This is done by choosing Save A4s... from the File
menu, selecting a location, and entering a name for the file. The names of user defined variables, predefined
variables, MATLAB commands or functions should not be used to name script files.

1.15.2 Running a Script File

A script file can be executed either by typing its name in the Command Window and then pressing the Enter
key, directly from the Editor Window by clicking on the Run icon. The file is assumed to be in the current
directory, or in the search path.

1.15.3 Input to a Script File
There are three ways of assigning a value to a variable in a script file.
1. The variable is defined and assigned value in the script file.
2. The variable is defined and assigned value in the Command Window.

3. The variable is defined in the script file, but a specified value is entered in the Command Window
when the script file is executed.

24 MATLAB: An Introduction with Applications

1.15.4 Output Commands

There are two commands that are commonly used to generate output. They are the disp and fprintf commands.

1. The disp command:
The disp command displays the elements of a variable without displaying the name of the variable and
displays text.
disp (name of a variable) or disp(‘'text as string’)
>>A=[123;4561];
>> disp(A)
123
4 5 6
>> disp(‘*Solution to the problem. ")
Solution to the problem.

2. The fprintf command:
The fprintf command displays output (text and data) on the screen or saves it to a file. The output can be
formatted using this command.

Example E1.4: Write a function file Veccrossprod to compute the cross product of two vectors a and b, where
a=(a,, ay, as),b=(by, by, by),and a x b =(ayby—a3b,, asb, — a,b;, a,b, — a,b,). Verify the function by taking
the cross products of pairs of unit vectors: (i, j), (j, k), etc.

Solution:
function ¢ = Veccrossprod (a, b) ;

)

% Veccrossprod : function to compute ¢ = a x b where a and b are 3-D vectors

o\

call syntax:

o°

¢ = Veccrossprod (a, b) ;
c=la(2)*b(3)-a(3)*b(2); a(3)*b(l)-a(l)*b(3);a(l)*b(2)-a(2)*b(1)];

1.16 PROGRAMMING IN MATLAB

One most significant feature of MATLAB is its extendibility through user-written programs such as the
M-files. M-files are ordinary ASCII text files written in MATLAB language. A function file is a subprogram.

1.16.1 Relational and Logical Operators

A relational operator compares two numbers by finding whether a comparison statement is true or false.
A logical operator examines true/false statements and produces a result which is true or false according to the
specific operator. Relational and logical operators are used in mathematical expressions and also in combination
with other commands to make decision that control the flow of a computer program.

MATLAB Basics

MATLAB has six relational operators as shown in Table 1.21.

Table 1.21 Relational operators

Relational operator Interpretation
< Less than
<= Less than or equal
> Greater than
>= Greater than or equal
== Equal
~= Not equal

The logical operators in MATLAB are shown in Table 1.22.

Table 1.22 Logical operators

Logical operator | Name Description
& AND | Operates on two operands (4 and B). If both are
Example: A&B true, the result is true (1), otherwise the result is
false (0).

OR | Operates on two operands (4 and B). If either one,

Example: 4|B or both are true, the result is true (1), otherwise

(both are false) the result is false (0).

Example: ~4

NOT | Operates on one operand (4). Gives the opposite of
the operand. True (1) if the operand is false, and
false (0) if the operand is true.

1.16.2 Order of Precedence
The following Table 1.23 shows the order of precedence used by MATLAB.

Table 1.23
Precedence Operation
1 (highest) | Parentheses (If nested parentheses exist, inner have precedence).
2 Exponentiation.
3 Logical NOT (~).
4 Multiplication, Division.
5 Addition, Subtraction.
6 Relational operators (>, <, >=, <=, ==, ~=).
7 Logical AND (&).
8 (lowest) | Logical OR ().

1.16.3 Built-in Logical Functions

The MATLAB built-in functions which are equivalent to the logical operators are:
and (A, B) Equivalentto 4 & B
or (A,B) Equivalentto 4 | B
not (A) Equivalent to ~4

26

MATLAB: An Introduction with Applications

List the MATLAB logical built-in functions are described in Table 1.24.

Table 1.24 Additional logical built-in functions

Function Description Example
xor(a, b) | Exclusive or. Returns true (1) if one >>xor(8, —1)
operand is true and the other is false. ans =()
>>xor(8, 0)
ans =1
all(A) Returns 1 (true) if all elements in a >>4=[53117815]
vector A are true (non-zero). Returns 0 | >>all(4)
(false) if one or more elements are false | ans =
(zero). If 4 is a matrix, treats columns >>B=[36114013]
of A4 as vectors, returns a vector with >>all(B)
I’sand 0’s. ans =()
any(A) Returns 1 (true) if any element in a >>4=[50140013]
vector A4 is true (non-zero). Returns 0 >>any(A4)
(false) if all elements are false (zero). ans = |
If 4 is a matrix, treats columns of 4 as >>B=[000000]
vectors, returns a vector with 1’s and >>any(B)
0’s. ans =()
find(A) If 4 is a vector, returns the indices of >>4=[074280039]
the non-zero elements. >>find(4)
find(A>d)| If 4 is a vector, returns the address of ans=234589
the elements that are larger than d (any | >>find(4 > 4)
relational operator can be used). ans =456

The truth table for the operation of the four logical operators, and, or, xor and not are summarized in Table 1.25.

Table 1.25 Truth table

INPUT OUTPUT
4 B AND | OR | XOR | NOT | NOT
A&B | AIB | (4,B) | ~4 ~B
false | false | false | false | false | true | true
false | true | false | true | true true | false
true | false | false | true | true false | true
true | true | true true | false | false | false

1.16.4 Conditional Statements

A conditional statement is a command that allows MATLAB to make a decision on whether to execute a group

of commands that follow the conditional statement or to skip these commands.
if conditional expression consists of relational and/or logical operators

if a< 30

count = count + 1

disp a
end

MATLAB Basics 27

The general form of a simple if statement is as follows:
if logical expression
statements
end

If the logical expression is true, the statements between the if statement and the end statement are executed.
If the logical expression is false, then it goes to the statements following the end statement.

1.16.5 Nested if Statements

Following is an example of nested if statements:

if a<30
count = count + 1;
disp(a) ;
if bs>a
b=0;
end
end

1.16.6 else AND elseif Clauses

The else clause allows to execute one set of statements if a logical expression is true, and a different set if the
logical expression is false.
% variable name inc
if inc<1
x_inc = inc/10;
else
X _inc =0.05;
end

When several levels of if-else statements are nested, it may be difficult to find which logical expressions must
be true (or false) to execute each set of statements. In such cases, the elseif clause is used to clarify the
program logic.

1.16.7 MATLAB while Structures
There is a structure in MATLAB that combines the for loop with the features of the if block. This is called the
while loop and has the form:

while logical expression

This set of statements is executed repeatedly as long as the logical expressions remain true (equals +1) or if the
expression is a matrix rather than a simple scalar variable, as long as, a/l the elements of the matrix remain non-
ZEr0.

end

In addition to the normal termination of a loop by means of the end statement, there are additional MATLAB
commands available to interrupt the calculations. These commands are listed in Table 1.26.

28

MATLAB: An Introduction with Applications

error (‘text’)

Table 1.26
Command Description
break Terminates the execution of MATLAB for and while loops. In
nested loops, break will terminate only the innermost loop in which
itis placed.
return Primarily used in MATLAB functions, return will cause a normal

return from a function from the point at which the return statement
isexecuted.

Terminates execution and displays the message contained in zext
on the screen. Note, the text must be enclosed in single quotes.

The MATLAB functions used are summarized in Table 1.27 below:

Table 1.27

Function

Description

Relational
operators

Combinatorial
operators

all, any

find

if, else, elseif

A MATLAB logical relation is a comparison between two
variables x and y of the same size effected by one of the six
operators, <, <=, > >= = = ~ = The comparison involves
corresponding elements of x and y, and yields a matrix or scalar
of the same size with values of “true” or “false” for each of its
elements. In MATLAB, the value of “false” is zero, and “true”
has a value of one. Any non-zero quantity is interpreted as
“true”.

The operators & (AND) and | (OR) may be used to combine two
logical expressions.

If x is a vector, all(x) returns a value of one; if all of the
elements of x are non-zero, and a value of zero otherwise. When
X is a matrix, all(X) returns a row vector of ones or zeros
obtained by applying all to each of the columns of X. The
function any operates similarly if any of the elements of x are
non-zero.

If x is a vector, i = find(x) returns the indices of those elements
of x that are non-zero (i.e., true). Thus, replacing all the negative
elements of x by zero could be accomplished by

i=find(x <0);

x(i) = zeros(size(i));
If X is a matrix, [i, j| = find(X)operates similarly and returns
the row-column indices of non-zero elements.

The several forms of MATLAB if blocks are as follows:
ifvariable ifvariable 1 ifvariable 1
block of statements block of statements block of statements

MATLAB Basics

executed if variable executed if variable 1 executed if
variable 1 is “true”, i.e., non-zero is “true”, i.e., Non-zero is

“true”,
end else elseif variable?2
block of statements block of statements
executed if variable 1 executed if variable 2 is “false”, i.e.,

zero is “true”,
end else end
block of statements executed ifneither variable is “true”
break Terminates the execution of a for or while loop. Only the
innermost loop in which break is encountered will be
terminated.
return Causes the function to return at that point to the calling routine.
MATLAB M-file functions will return normally without this
statement.

error (‘text’) |Within a loop or function, if the statement error (‘text’) is
encountered, the loop or function is terminated, and the fext is
displayed.
while The form of the MATLAB while loop is
while variable
block of statements executed as long as the value of
variableis “true”; i.e., non-zero .
end

Useful when a function F itself calls a second “dummy” function
“f”. For example, the function F might find the root of an arbitrary
function identified as a generic f(x). Then, the name of the actual
M-file function, say fname, is passed as a character string to the
function F either through its argument list or as a global variable,
and the function is evaluated within F by means of feval. The use
of feval(name, x1, x2, ..., xn), where fname is a variable
containing the name of the function as a character string; i.e.,
enclosed in single quotes, and x1, x2, ..., xn are the variables
needed in the argument list of function fname.

1.17 GRAPHICS

MATLAB has many commands that can be used to create basic 2-D plots, overlay plots, specialized 2-D plots,
3-D plots, mesh and surface plots.

1.17.1 Basic 2-D Plots

The basic command for producing a simple 2-D plot is
plot(x values, y values, ‘style option’)

where
x values and y values are vectors containing the x- and y-coordinates of points on the graph.
Style option is an optional argument that specifies the color, line-style and the point-marker style.

30

MATLAB: An Introduction with Applications

The style option in the plot command is a character string that consists of 1, 2 or 3 characters that specify the
color and/or the line style. The different color, line-style and marker-style options are summarized in Table 1.28.

Table 1.28 Color, line-style and marker-style options

Color style-option | Line style-option | Marker style-option
y yellow — solid + plussign

m magenta —— dashed o circle

¢ cyan : dotted * asterisk

r red —. dash-dot X x-mark

g green . point

b Dblue A up triangle

w white] square

k black d diamond, etc.

1.17.2 Specialized 2-D Plots

There are several specialized graphics functions available in MATLAB for 2-D plots. The list of functions
commonly used in MATLAB for plotting x-y data are given in Table 1.29.

Table 1.29 List of functions for plotting x-y data

Function Description
area Creates a filled area plot.
bar Creates a bar graph.
barh Creates a horizontal bar graph.
comet Makes an animated 2-D plot.
compass Creates arrow graph for complex numbers.
contour Makes contour plots.

contourf Makes filled contour plots.
errorbar Plots a graph and puts error bars.

feather Makes a feather plot.

fill Draws filled polygons of specified color.
fplot Plots a function of a single variable.

hist Makes histograms.

loglog Creates plot with log scale on both x and y axes.
pareto Makes pareto plots.

pcolor Makes pseudo color plot of matrix.

pie Creates a pie chart.

plotyy Makes a double y-axis plot.

plotmatrix | Makes a scatter plot of a matrix.

polar Plots curves in polar coordinates.

quiver Plots vector fields.

rose Makes angled histograms.

scatter Creates a scatter plot.

semilogx Makes semilog plot with log scale on the x-axis.
semilogy Makes semilog plot with log scale on the y-axis.
stairs Plots a stair graph.
stem Plots a stem graph.

MATLAB Basics 31

1.17.2.1 Overlay plots

There are three ways of generating overlay plots in MATLAB. They are:
(a) Plot command.
(b) Hold command.
(¢) Line command.

(a) Plot command

Example E1.5(a) shows the use of plot command used with matrix argument, each column of the second
argument matrix plotted against the corresponding column of the first argument matrix.

(b) Hold command

Invoking hold on at any point during a session freezes the current plot in the graphics window. All the next
plots generated by the plot command are added to the exiting plot. See Example E1.5(a).

(¢) Line command

The line command takes a pair of vectors (or a triplet in 3-D) followed by a parameter name/parameter value
pairs as argument. For instance, the command: line (x data, y data, parameter name, parameter value) adds
lines to the existing axes. See Example E1.5(a).

1.17.3 3-D Plots

MATLAB provides various options for displaying three-dimensional data. They include line and wire, surface,
mesh plots, among many others. More information can be found in the Help Window under Plotting and Data
visualization. Table 1.30 lists commonly used functions.

Table 1.30 Functions used for 3-D graphics

Command Description
plot3 Plots three-dimensional graph of the trajectory of a set of three parametric equations x(?),
W(?), and z(¢) can be obtained using plot3(x,y,z).

meshgrid If x and y are two vectors containing a range of points for the evaluation of a function,
[X,Y] = meshgrid(x, y) returns two rectangular matrices containing the x and y values at
each point of a two-dimensional grid.

mesh(X,Y,z) If X and Y are rectangular arrays containing the values of the x and y coordinates at each
point of a rectangular grid , and if z is the value of a function evaluated at each of these
points, mesh(X,Y,z) will produce a three-dimensional perspective graph of the points.
The same results can be obtained with mesh(x,y,z) can also be used.

meshc, meshz |If the xy grid is rectangular, these two functions are merely variations of the basic
plotting program mesh, and they operate in an identical fashion. meshc will produce a
corresponding contour plot drawn on the xy plane below the three-dimensional figure,
and meshz will add a vertical wall to the outside features of the figures drawn by mesh.

surf Produces a three-dimensional perspective drawing. Its use is usually to draw surfaces, as
opposed to plotting functions, although the actual tasks are quite similar. The output of
surf will be a shaded figure. If row vectors of length » are defined by x =r cos 6 and y =
r sin 0, with 0 < 6 < 27, they correspond to a circle of radius r. If 7 is a column vector
equal tor =[0 1 2]’; then z = r*ones(size(x)) will be a rectangular, 3 x n, arrays of 0’s
and 2’s, and surf(x, y, z) will produce a shaded surface bounded by three circles; i.e., a
cone.

32

MATLAB: An Introduction with Applications

surfc
Colormap

Shading

view

axis

contour

plot3

grid

slice

This function is related to surf in the same way that meshc is related to mesh.

Used to change the default coloring of a figure. See the MATLAB reference manual or the help
file.

Controls the type of color shading used in drawing figures. See the MATLAB reference manual
or the help file.

view(az,el) controls the perspective view of a three-dimensional plot. The view of the figure is
from angle “el” above the xy plane with the coordinate axes (and the figure) rotated by an angle
“az” in a clockwise direction about the z axis. Both angles are in degrees. The default values
are az = 37'4° and el = 30°.

Determines or changes the scaling of a plot. If the coordinate axis limits of a two-dimensional
or three-dimensional graph are contained in the row vector 7 = [Xmin, Xmax> Vimin> Ymax> Zmin> Zmax s
axis will return the values in this vector, and axis(r) can be used to alter them. The coordinate
axes can be turned on and off with axis(‘on’) and axis(‘off’). A few other string constant
inputs to axis and their effects are given below:

axis(‘equal’) x and y scaling are forced to be the same.

axis(‘square’) The box formed by the axes is square.

axis(‘auto’) Restores the scaling to default settings.

axis(‘normal’) Restoring the scaling to full size, removing any effects of square or equal
settings.

axis(‘image’) Alters the aspect ratio and the scaling so the screen pixels are square shaped
rather than rectangular.

The use is contour(x,y,z). A default value of N = 10 contour lines will be drawn. An optional

fourth argument can be used to control the number of contour lines that are drawn.

contour(x,y,z,N), if N is a positive integer, will draw N contour lines, and contour(x,y,z,V), if

V is a vector containing values in the range of z values, will draw contour lines at each value of

z=V.

Plots lines or curves in three dimensions. If x, y, and z are vectors of equal length, plot3(x,y,z)

will draw, on a three-dimensional coordinate axis system, the lines connecting the points. A

fourth argument, representing the color and symbols to be used at each point, can be added in

exactly the same manner as with plot.

grid on adds grid lines to a two-dimensional or three-dimensional graph; grid off removes
them.

Draws “slices” of a volume at a particular location within the volume.

Example E1.5:

(a) Generate an overlay plot for plotting three lines

yy=sint

yz:t 3 5 7
ot t
y3—t7§+§+ﬁ; 0<t<2m

MATLAB Basics

Use (i) theplot command
(ii) the hold command
(iii) the line command

(b) Use the functions for plotting x-y data for plotting the following functions:
(i) f(H)=tcost
0<t<10m
@) x=¢'
y =100+ ¢3!
0<¢<2m
Solution:

(a) Overlay plot

(7)) % using the plot command
t = linspace (0, 2*pi, 100);
vyl = sin(t); y2 = t;
y3 =t -(£.”3)/6 + (£.75)/120-(t£."7)/5040;
plot(t, v1, t, y2, *-', t, y3, ‘0o’)
axis ([0 5 -1 5])
xlabel (‘t’)
ylabel (‘sin(t) approximation’)
title(‘'sin(t) function’)
text (3.5,0, ‘sin(t)’)
gtext (‘Linear approximation’)
gtext (‘*4-term approximation’)

Output is shown in Fig. E1.5(a).

sin(t) function
5 T r T

Linear approximation

sin(t) approximation
N

3 sin(t) |
“ON4-term approximation

|
N
L
L
-
L
L

Fig. E1.5 (a)

34

MATLAB: An Introduction with Applications

(i)

% using the hold command

x = linspace (0, 2*pi, 100); yl=sin(x);
plot (x,y1l)

hold on

y2 =x; plot(x, y2, *-")

y3=x-(x."3)/6 + (x.75)/120-(t£."7)/5040;
plot (x, y3, ‘o’)

axis ([0 5-15])

hold off

Output is shown in Fig. E1.5(0).
5 : ; ; :

Fig. E1.5 (b)

(iif) % using the line command

t = linspace (0, 2*pi, 100) ;

vyl =sin(t);

y2 =t;

y3=t-(t.”3)/6 + (£.75) /120 - (£."7)/5040;
plot (t, y1)

line(t, y2, ‘linestyle’, *-")

line(t, y3, ‘marker’, ‘0o’)

axis([05-151)

xlabel (*t’")

ylabel (‘sin(t) approximation’)
title('sin(t) function’)
legend(‘sin(t)’, ‘linear approx’, ‘7th order approx’)

MATLAB Basics

35

Output is shown in Fig. E1.5(c).

5 sin(t) function

— sin(t)
— linear approx
-©- 7th order approx

sin(t) approximation

t
Fig. E1.5 (c)

(b) Using Table 1.29, functions
(i) fplot(‘x*cos(x)’, [0 10*pi])
This will give the following figure (Fig. E1.5 (d)).
40 T T T T T T

30

20

10

Fig. E1.5 (d)

(@i t = linspace (0, 2*pi, 200) ;
x =exp(t);
y =100 +exp(3*t);

loglog(x, y), grid

An Introduction with Applications

MATLAB

36

FE-mMOATT-mAATT - WAATA - N - o
ITrFF-"MANTT - mAAT T~ MAAT I~ M-

Fig. E1.5 (e)

Example E1.6

(a) Plot the parametric space curve of

x(t)=t

£2

(1)

.0

1

<

0< ¢

T/(A+x2+)2); | x| <5, |y|<5

z(t)=17;

(b) z
Solution

2,

1

0

(

>> t = linspace

(@)

A2;

7

t
>>plot 3 (x, v,

>> X

y=t

The plot is shown in figure E1.6 (a).

Fig. E1.6 (a)

MATLAB Basics 37

() >> t=linspace(0,2,100);
x=t; y=t. 72; z=t."3;
plot3 (x,y,z), grid

t=linspace(-5,5,50) ;
z==7./(1+x.72+y."2);

mesh (z)
The plot is shown in figure E1.6(b).

>>

>>

>>

y=X;

>>

>>

20

00

Fig. E1.6(b)

1.17.4 Saving and Printing Graphs

100

To obtain a hardcopy of a graph, type print in the Command Window after the graph appears in the Figure
Window. The figure can also be saved into a specified file in the PostScripter or Encapsulated PostScript (EPS)

format. The command to save graphics to a file is

print — d devicetype — options filename

where device type for Postscript printers are listed in the following Table 1.31.

Table 1.31 Devicetype for PostScript printers

Devicetype Description Devicetype Description
ps Black and white PostScript |eps Black and white EPSF
psc Color PostScript epsc Color EPSF
ps2 Level 2 BW PostScript eps2 Level 2 black and white
psc2 Level 2 color PostScript EPSF

epsc2 Level 2 color EPSF

MATLAB can also generate a graphics file in the following popular formats among others:

—dill :Saves file in Adobe Illustrator format.

—djpeg : Saves file as a JPEG image.

—dtiff : Saves file as a compressed TIFF image.
—dmfile : Saves file as an M-file with graphics handles.

38

MATLAB: An Introduction with Applications

1.18 INPUT/OUTPUT IN MATLAB

In this section, we present some of the many available commands in MATLAB for reading data from an
external file into a MATLAB matrix, or writing the numbers computed in MATLAB into such an external file.

1.18.1 The fopen Statement

To have the MATLAB read or write a separate data file of numerical values, we need to connect the file to the
executing MATLAB program. The MATLAB functions used are summarized in Table 1.32.

Table 1.32 MATLAB functions used for input/output

Function

Description

fopen

fclose

fscanf

fprintf

Connects an existing file to MATLAB orto create anew file from MATLAB.
fid =fopen (Filename’, permission code);

where, if fopen is successful, fid will be returned as a positive integer greater than 2. When
unsuccessful, a value of—1 is returned. Both the file name and the permission code are string constants
enclosed in single quotes. The permission code can be a variety of flags that specify whether or not
the file can be written to, read from, appended to, or a combination of these. Some common codes are:

Code Meaning

‘r’ read only

‘w’ write only

‘r+ read and write
‘at’ read and append

The fopen statement positions the file at the beginning.

Disconnects a file from the operating MATLAB program. The use is fclose(fid), where fid is the file
identification number of the file returned by fopen.fclose(‘all’) will close all files.

Reads opened files. The use is
A=fscanf(fid, FORMAT, SIZE)

where FORMAT specifies the types of numbers (integers, reals with or without exponent, character
strings) and their arrangement in the data file, and optional SIZE determines how many quantities
are to be read and how they are to be arranged into the matrix A. If SIZE is omitted, the entire file is
read. The FORMAT field is a string (enclosed in single quotes) specifying the form of the numbers in
the file. The #ype of each number is characterized by a percent sign (%), followed by a letter (i or d for
integers, eor f for floating-point numbers with or without exponents). Between the percent sign and
the type code, one can insert an integer specifying the maximum width of the field.

Writes files previously opened.
fprintf(fid, FORMAT, A)

where fid and FORMAT have the same meaning as for fscanf, with the exception that for output
formats the string must end with \n, designating the end of a line of output.

MATLAB Basics 39

1.19 SYMBOLIC MATHEMATICS

In Secs. 1.1 to 1.18, the capability of MATLAB for numerical computations have been described. In this
section some of MATLAB’s capabilities for symbolic manipulations will be presented. Specifically, the symbolic
expressions, symbolic algebra, simplification of mathematical expressions, operations on symbolic expressions,
solution of a single equation or a set of linear algebraic equations, solutions to differential equations,
differentiation and integration of functions using MATLAB are presented.

1.19.1 Symbolic Expressions
A symbolic expression is stored in MATLAB as a character string. A single quote marks are used to define
the symbolic expression. For instance:

‘sin(y/x)’; ‘XM + 5 x" 3+ TExN2 -7
The independent variable in many functions is specified as an additional function argument. If an independent
variable is not specified, then MATLAB will pick one. When several variables exist, MATLAB will pick the
one that is a single lower case letter (except i and j), which is closest to x alphabetically.
The independent variable is returned by the function symvar,
symvar(s): Returns the independent variable for the symbolic expression s.

For example:
Expression (s) symvar(s)
Sxcxd+34 d
‘sin(y/x)’ x

In MATLAB, a number of functions are available to simplify mathematical expressions by expanding the
terms, factoring expressions, collecting coefficients, or simplifying the expression. For instance;

expand(s): Performs an expansion of s.

A summary of these expressions is given in Table 1.33. A summary of basic operations is given in Table 1.34.
The standard arithmetic operation (Table 1.35) is applied to symbolic expressions using symbolic functions.
These symbolic expressions are summarized in Table 1.36.

Table 1.33
Simplification
collect Collect common terms
expand Expand polynomials and elementary functions
factor Factorization

horner Nested polynomial representation
numden | Numerator and denominator
simple Search for shortest form

simplify | Simplification

subexpr | Rewrite in terms of subexprssions

40

MATLAB: An Introduction with Applications

Table 1.34
Basic operations
ccode C code representation of a symbolic expression
conj Complex conjugate
findsym | Determine symbolic variables
fortran | Fortran representation of a symbolic expression
imag Imaginary part of a complex number
latex LaTeX representation of a symbolic expression
pretty | Pretty prints a symbolic expression
real Real part of an imaginary number
sym Create symbolic object
syms Shortcut for creating multiple symbolic objects
Table 1.35
Arithmetic operations
+ Addition
- Subtraction
* Multiplication
N Array multiplication
/ Right division
J/ Array right division
\ Left division
A Array left division
A Matrix or scalar raised to a power
A Array raised to a power
¢ Complex conjugate transpose
S Real transpose
Table 1.36
Symbolic expressions
horner(S) Transposes S into its Horner, or nested, representation.
numden(S) Returns two symbolic expressions that represent,
respectively, the numerator expression and the
denominator expression for the rational representation
of S.
numeric(S) | Converts S to a numeric form (S must not contain any
symbolic variables).
poly2sym(c) | Converts a polynomial coefficient vector ¢ to a
symbolic polynomial.
pretty(S) Prints S in an output form that resembles typeset
mathematics.
sym2poly(S) | Converts S to a polynomial coefficient vector. *
symadd(A,B) | Performs a symbolic addition, A + B.
symdiv(A,B) | Performs a symbolic division, A / B.
symmul(A,B)| Performs a symbolic multiplication, A * B.
sympow(S,p) | Performs a symbolic power, S*p.

symsub(A,B)

Performs a symbolic subtraction, A — B.

MATLAB Basics iy |

1.19.2 Solution to Differential Equations

Symbolic math functions can be used to solve a single equation, a system of equations and differential
equations. For example:
solve(f): Solves a symbolic equation f for its symbolic variable. If f is a symbolic expression, this function
solves the equation f= 0 for its symbolic variable.
solve(f1, ..., fn): Solves the system of equations represented by f1, ..., fn.
The symbolic function for solving ordinary differential equation is dsolve as shown below:
dsolve(‘equation’, ‘condition’): Symbolically solves the ordinary differential equation specified by ‘equation’.
The optional argument ‘condition’ specifies a boundary or initial condition.
The symbolic equation uses the letter D to denote differentiation with respect to the independent variable.
D followed by a digit denotes repeated differentiation. Thus, Dy represents dy/dx, and D2y represents
d?yldx?®. For example, given the ordinary second order differential equation;
2

d—f +5 ax +3x=7

dt dt
with the initial conditions x(0) =0 and x(0)=1.
The MATLAB statement that determines the symbolic solution for the above differential equation is the
following:

x =dsolve ('D2x = -5*Dx - 3*x + 7', ‘x(0) =0’, ‘Dx(0) =1")

The symbolic functions are summarized in Table 1.37.

Table 1.37 Solution of equations

compose Functional composition

dsolve Solution of differential equations
finverse Functional inverse

solve Solution of algebraic equations

1.19.3 Calculus

There are four forms by which the symbolic derivative of a symbolic expression is obtained in MATLAB.
They are:

diff(f) : Returns the derivative of the expression f with respect to the default independent variable.
diff(f, ‘t’) : Returns the derivative of the expression f with respect to the variable t.

diff(f,n) : Returns the nth derivative of the expression f with respect to the default independent variable.
diff (f,‘t’, n) : Returns the nth derivative of the expression f with respect to the variable t.

The various forms that are used in MATLAB to find the integral of a symbolic expression f are given and
summarized in Table 1.38.

int(f) : Returns the integral of the expression f with respect to the default independent variable.

int(f, ‘t’) : Returns the integral of the expression f with respect to the variable t.

int(f, a,b) : Returns the integral of the expression f with respect to the default independent variable
evaluated over the interval [a, b], where a and b are numeric expressions.

int(f,°t’, a, b): Returns the integral of the expression f with respect to the variable t evaluated over the
interval [a, b], where a and b are numeric expressions.

42

MATLAB: An Introduction with Applications

int(f, ‘m’, ‘n’): Returns the integral of the expression f with respect to the default independent variable
evaluated over the interval [m, n], where m and n are numeric expressions.

The other symbolic functions for pedagogical and graphical applications, conversions, integral transforms,

and linear algebra are summarized in Tables 1.38 to 1.42.

Table 1.38
Calculus
diff Differentiate
int Integrate
jacobian Jacobian matrix
limit Limit of an expression
symsum Summation of series
taylor Taylor series expansion
Table 1.39
Pedagogical and graphical applications
ezcontour Contour plotter
ezcontourf Filled contour plotter
ezmesh Mesh plotter
ezmeshc Combined mesh and contour plotter
ezplot Function plotter
ezplot Easy-to-use function plotter
ezplot3 Three-dimensional curve plotter
ezpolar Polar coordinate plotter
ezsurf Surface plotter
ezsurfc Combined surface and contour plotter
funtool Function calculator
rsums Riemann sums
taylortool Taylor series calculator
Table 1.40
Conversions
char Convert symbolic object to string
double Convert symbolic matrix to double
poly2sym Function calculator
sym2poly Symbolic polynomial to coefficient vector
Table 1.41
Integral transforms
fourier Fourier transform
ifourier Inverse Fourier transform
ilaplace Inverse Laplace transform
iztrans Inverse Z-transform
laplace Laplace transform
ztrans Z-transform

MATLAB Basics 43
Table 1.42

Linear algebra
colspace Basis for column space
det Determinant
diag Create or extract diagonals
eig Eigenvalues and eigenvectors
expm Matrix exponential
inv Matrix inverse
jordan Jordan canonical form
null Basis for null space
poly Characteristic polynomial
rank Matrix rank
rref Reduced row echelon form
svd Singular value decomposition
tril Lower triangle
triu Upper triangle

1.20 THE LAPLACE TRANSFORMS

The Laplace transformation method is an operational method that can be used to find the transforms of time
functions, the inverse Laplace transformation using the partial-fraction expansion of B(s)/A(s), where A(s) and
B(s) are polynomials in s. In this Chapter, we present the computational methods with MATLAB to obtain the
partial-fraction expansion of B(s)/A(s) and the zeros and poles of B(s)/A(s).

MATLAB can be used to obtain the partial-fraction expansion of the ratio of two polynomials, B(s)/A4(s)
as follows:
B(s) num _ b(1)s" +b(2)s" " +--+b(n)
A(s) den a(1)s" +a(2)s"" +-+a(n)

where a(1) # 0 and num and den are row vectors. The coefficients of the numerator and denominator of
B(s)/A(s) are specified by the num and den vectors.

Hence num=[b(1) b(2) ... b(n)]
den =[a(l) a2) ... a()]
The MATLAB command

r, p, k=residue(num, den)

is used to determine the residues, poles and direct terms of a partial-fraction expansion of the ratio of two
polynomials B(s) and A(s) is then given by

BO)_ g r) @)
A(s) s=p) s-p(2) s = p(n)
The MATLAB command [num, den] =residue(r, p, k) where 7, p, k are the output from MATLAB converts the
partial fraction expansion back to the polynomial ratio B(s)/A(s).
The command printsys (num, den,‘s’) prints the num/den in terms of the ratio of polynomials in s.
The command ilaplace will find the inverse Laplace transform of a Laplace function.

44

MATLAB: An Introduction with Applications

1.20.1 Finding Zeros and Poles of B(s)/A(s)

The MATLAB command [z, p, k] = tf 2zp(num, den) is used to find the zeros (z), poles (p), and gain (k) of
B(s)/A(s).

If the zeros (z), poles (p) and gain (k) are given, the following MATLAB command can be used to find the
original num/den:
[num, den] = zp2tf (z,p,k)

1.21 CONTROL SYSTEMS

MATLAB has an extensive set of functions for the analysis and design of control systems. They involve
matrix operati7ons, root determination, model conversions and plotting of complex functions. These functions
are found in MATLAB’s control systems toolbox. The analytical techniques used by MATLAB for the
analysis and design of control systems assume the processes that are linear and time invariant. MATLAB
uses models in the form of transfer-functions or state-space equations.

1.21.1 Transfer Functions
The transfer function of a linear time invariant system is expressed as a ratio of two polynomials. The transfer
function for a single input and a single output (SISO) system is written as

bys" +bs" 4.+ b, s+,

m m—1
aps +(115 +...+(1m_lS+(1m

H(s)=

when the numerator and denominator of a transfer function are factored into the zero-pole-gain form, it is
given by

(s=z)(s=2p)..(s—2,)
(s = p)(s = p2)(s = py)

H(s)=k

The state-space model representation of a linear control system s is written as
X =Ax+ Bu
y=Cx+Du

1.21.2 Model Conversion

There are a number of functions in MATLAB that can be used to convert from one model to another. These
conversion functions and their applications are summarized in Table 1.43.

Table 1.43 Model conversion functions

Function Purpose
C2d Continuous state-space to discrete state-space
residue Partial-fraction expansion
ss3tf State-space to transfer function
ss2zp State-space to zero-pole-gain
tf2ss Transfer function to state-space
tf2zp Transfer function to zero-pole-gain
Zp2ss Zero-pole-gain to state-space
zp2tf Zero-pole-gain to transfer function

MATLAB Basics 45

Residue Function: The residue function converts the polynomial transfer function

bys" +bs" 4.+ b, s+b,

H(s)=
aps" +ays" '+ . +a, s+a,

to the partial fraction transfer function

i nH

+ fop +k(s)
S=Ph STP S=Pn
[r, p, K] =residue(B,4) Determine the vectors r, p and k, which contain the residue values, the poles and
the direct terms from the partial-fraction expansion. The inputs are the polynomial
coefficients B and A from the numerator and denominator of the transfer function,
respectively.

H(s)=

ss2tf Function: The ss2tf function converts the continuous-time, state-space equations
x’=Ax + Bu
y=Cx+Du

to the polynomial transfer function

n n-1
H(s)= bys" +bis" +..4+b,_s+b,

aps" +ais" ¥ +a, s+a,

The function has two output matrices:

[num, den] =ss2tf(A, B, C, D,iu) Computes vectors num and den containing the coefficients, in descending
powers of s, of the numerator and denominator of the polynomial transfer
function for the iu™ input. The input arguments A, B, C and D are the
matrices of the state-space equations corresponding to the iu™® input, where
iu is the number of the input for a multi-input system. In the case of a single-
input system, iu is 1.

ss2zp Function: The ss2zp function converts the continuous-time, state-space equations

x'=Ax+ Bu
y=Cx+Du
to the zero-pole-gain transfer function
S—z)8 —z)...(s—z
H(S):k (1)(2) (n)
(s=p)(s—py)...(s—p,)

The function has three output matrices:

[z, p, kK] =ss2zp(A, B, C, D, iu) Determines the zeros (z) and poles (p) of the zero-pole-gain transfer function
for the iut input, along with the associated gain (k). The input matrices A,
B, C and D of the state-space equations correspond to the iu®" input, where
iu is the number of the input for a multi-input system. In the case of a single-
input system, iu is 1.

tf2ss Function: The ts2ss function converts the polynomial transfer function

bys" +bs" +..+b, s+b,

H(S) = m m—-1
ays +a1S +...+am_1s+am

46

MATLAB: An Introduction with Applications

to the controller-canonical form state-space equations
x'=Ax+ Bu
y=Cx+Du

The function has four output matrices:

[A, B, C, D] =tf2ss(num,den) Determines the matrices A, B, C and D of the controller-canonical form state-
space equations. The input arguments num and den contain the coefficients,
in descending powers of s, of the numerator and denominator polynomials of
the transfer function that is to be converted.

tf 2zp Function: The tf 2zp function converts the polynomial transfer function

bys" +bs" 4.+ b,_s+b,

m m—1
aps +a;s +..ta,;s+a,

H(s)=

to the zero-pole-gain transfer function
(5= 2)(5 = 2)-(s ~ 2,)
(s=p)(s=py)-(s—py)

The function has three output matrices:

H(s)=k

[z, p, k] =tf2zp(num, den) Determines the zeros (z), poles (p) and associated gain (k) of the zero-pole-
gain transfer function using the coefficients, in descending powers of s, of
the numerator and denominator of the polynomial transfer function that is to
be converted.

zp2tf Function: The zp2tf function converts the zero-pole-gain transfer function
(s—z)(8—25)..(s—z,)
(s=p)(s—py)...(s—p,)

to the polynomial transfer function

H(s)=k

bys" +bs" " +..+b,_s+b,

m m—1
aps +a;s +..ta,;st+a,

H(s)=

The function has two output matrices:

[num, den] =zp2tf(z, p,Kk) Determines the vectors num and den containing the coefficients, in descending
powers of s, of the numerator and denominator of the polynomial transfer
function. p is a column vector of the pole locations of the zero-pole-gain transfer
function, z is a matrix of the corresponding zero locations, having one column
for each output of a multi-output system, k is the gain of the zero-pole-gain
transfer function. In the case of a single-output system, z is a column vector of
the zero locations corresponding to the pole locations of vector p.

zp2ss Function: The zp2ss function converts the zero-pole-gain transfer function
(5= 2)(5 = 2)-(s ~ 2,)
(s=p)(s—py)-(s—py)

to the controller-canonical form state-space equations

H(s)=k

MATLAB Basics 47

x'=Ax+ Bu
y=Cx+Du
The function has four output matrices:

[A, B,C, D] =2zp2ss(z, p, k) Determines the matrices A, B, C, and D of the control-canonical form state-
space equations. p is a column vector of the pole locations of the zero-pole-
gain transfer function, z is a matrix of the corresponding zero locations, having
one column for each output of a multi-output system, k is the gain of the zero-
pole-gain transfer function. In the case of a single-output system, z is a
column vector of the zero locations corresponding to the pole locations of
vector p.

Example Problems and Solutions

Example E1.7: Consider the function

H(s)= LS)
d(s)

where n(s)=s*+6s3+ 552 +4s+3

d(s)=s°+T7s*+ 65+ 552+ 45 +7
(a) Find n(-10), n(-5), n(-3) and n(-1)
(b) Find d(—10), d(-5), d(-3) and d(-1)
(¢) Find H(-10), H(-5), H(-3) and H(-1)

Solution:

(@ >>n=[16543]; %$n=s"4+65"3+55"2+45+3
>>d=[176547]; $ d=s"5+7s"4+6s"3+58"2+4s+7
>> n2=polyval (n, [-10])
n2=4463
>> nnl0=polyval (n, [-10])
nnl0=4463
>> nn5=polyval (n, [-5])
nn5=-17
>> nn3=polyval (n, [-3])
nn3=-45
>> nnl=polyval (n, [-1]1)
nnl=-1

() >>dnlo0=polyval(d, [-10])
dnl0=-35533
>> dn5=polyval (d, [-5])
dn5=612
>> dn3=polyval (4, [-3])

48

MATLAB: An Introduction with Applications

dn3=202
>> dnl=polyval (d, [-1])
dnl=38
(¢) >> Hnl0=nnl0/dnlo0
Hnl0=-0.1256
>> Hn5=nn5/dn5
Hn5=-0.0278
>> Hn3=nn3/dn3
Hn3=-0.2228
>> Hnl=nnl/dnl
Hnl=-0.1250
Example E1.8: Generate a plot of

y(x) = e 07 sin ax
where ® = 15 rad/s, and 0 < x < 15. Use the colon notation to generate the x vector in increments of 0.1.
Solution:
>>x=[0:0.1:15];
>> w=15;
>> y=exp (-0.7*x) *sin (w*x) ;
>> plot (x,vy)
>> title(‘y(x)=
>> xlabel (‘'x’)
)

b'q
>> ylabel (‘y’

e*-"0".%7"xsin\omegax’)

y(x)=e""" sin mx
1 T T

0.6 1

0.4

0 5 10 15

MATLAB Basics

49

Example E1.9: Generate a plot of

where ® = 10 rad/s, and 0 <x < 15. Use the colon notation to generate the x vector in increments of 0.05.

Solution:
>>
>>
>>
>>
>>
>>

>>

—0.6x

y(x)=¢e COS x

x=[0:0.1:15];

w=10;

y=exp (-0.6*x) *cos (w*x) ;

plot (x, y)
title(‘y(x)=e*-"0"."6"xcos\omegax"’)
xlabel (*x")

ylabel (‘y’)

y(x) = €% cos o

1 T T
0.8
0.6
0.4
0.2

-0.2

-0.4

0.6

—-0.8

X
Fig. E1.9

15

Example E1.10: Using the functions for plotting x-y data given in Table 1.29, plot the following functions:

(@)
®)

©

@
©)

o

2=5cos3t,0<t<2n
2=5cos3t,0<t<2n
X=rcost,y=rsint
yi=e*cosx; 0<1<20
yzZeZX
cos(x)
=——,;-5<x<57n
f=e3cost; 0<t<2xm

1
2= 2y ST < T

50

MATLAB: An Introduction with Applications

Solution:

(@) t =linspace(0,2*pi,200);

r

polar (t,r)

sgrt (abs (5*cos (3*t))) ;

Fig. E1.10(a)

(b) t=linspace (0, 2*pi, 200) ;
r=sqgrt (abs (5xcos(3*t))) ;

x=r*cos (t) ;
y=r*sin(t) ;
fill(x, y, ‘k’),
axis (‘square’)

Fig. E1.10(b)

MATLAB Basics

(o) x=1:0.1:20;

yl=exp (-2*x) *cos (x) ;
y2 =exp (2*x) ;
Ax =plotyy (x,v1l, x,v2) ;

hyl =get (Ax (1), ‘ylabel’);

hy2 =get (Ax(2), ‘ylabel’);
set (hyl, ‘string’, ‘exp (-2x) -cos (x) ")
set (hy2, ‘string’, ‘exp (-2x) ') ;

17

x10
0.08 25
0.06 2
%
2 0.04 15 =
[S] N
< L
N [}
= 5
g 0.02 1
(0]
0 05
-0.02 0

0 2 4 6 8 10 12 14 16 18 20
Fig. E1.10(c)
(d) x=1linspace(-5*pi, 5*pi,100);
y = cos(x) - /x;
area(x, v);
xlabel ('x (rad) '), ylabel (‘cos (x)/x")
hold on

cos(x)/x
o

-15 —1b —é 0 5 1‘0 1‘5
x (rad)
Fig. 1.10(d)

52

MATLAB: An Introduction with Applications

() t =1linspace(0,2*pi,200);
f=exp(-0.6*t)*sin(t);
stem(t, £)

0.6 . :

Fig. E1.10(e)

(f) r=-7:0.2:7;
[X,Y] =meshgrid(r,r) ;
Z=-0.333*X.%242*X*Y+Y.%2;
cs=contour (X,Y, Z) ;
label (cs)

Fig. E1.10(f)

a
Rectangle

MATLAB Basics

53

Example E1.11: Use the functions listed in Table 1.30 for plotting 3-D data for the following:

X+

(@ z=cosxcosye 5
[x|<=7,|y|<7
(b) Discrete data plots with stems

x=t,y=tcos(t)
z=e-2;0<¢<5m

(¢) A cylinder generated by
r=sin(5nz)+3
0<z<1;0<0<2n

Solution:

(@) u=-7:0.2:7;x
[X,Y]=meshgrid(u,u) ;
Z=cos (X) xcos (Y) *exp (-sqrt (X*2+Y"*2) /5) ;
surf (X,Y,2)

Fig. E1.11(a)

() t=linspace(0,5*pi,200) ;
x=t; y=t*cos(t);
z=exp(t/5) -2;

y,z, filled’);

’

X

(

xlabel (‘t’), ylabel(‘tcos(t)’), zlabel (‘e®t/5-1")

MATLAB: An Introduction with Applications

stem3

54

L R
¢ ' T
: B '
; . '
' ‘ :
. . B
[A S R
¢ ' B
B . ' '
1) ')
B : ; B
R = =
__IIII..—IIII_H.IIII-.—III E —1 b
R — —— =
. ' ' S —— e — -
)) ‘1 e -
1 a4 4 i e -
' ' 1 1 i b
. ' 1 = — w
[e e o .
Y | . . “ | |
\ \ \ \ \ \ \ K=l
i Y “ Y . Y
L " K il il il F
. i ' \ 1 l
\ L ' ' L '
1 ' ' ' ' '
iE s D e B g fuamene)
1 | . . | |
. i Y i Y i
. Y 1 Y 1 Y
. ' 1 1 i 1
. ' ' . ' L
i ' L ' L ' o~
' | | y y .
o ™
) 1 il 1 1 1 +
Y 1 Y 1 1
i i 1 i i —
i 3 5 I '
L) 13 13 . 3 Z
\ [“ 5 “ *x o~
-y
n o n o 0 Q —
N] - - *
b-61® 0
N
a
-
0}

z=[0:0.2:1]";

r
cylinder

©

Fig. E1.11(c)

MATLAB Basics 55

Example E1.12: Obtain the plot of the points for 0 < ¢ < 6 when the coordinates x, y, z are given as a function
of the parameter ¢ as follows:

x =/t sin(3¢)
y= x/;cos(3t)
z=0.8¢

Solution:
% Line plots
>> t=[0:0.1:6*pi];
>> x=gqrt (t) *sin(3*t) ;
>> y=sqgrt (t) *cos (3*t) ;
>> z=0.8*t;
>> plot3(x,vy,z, ‘k’, ‘linewidth’, 1)
>> grid on

>> xlabel (‘x’); ylabel (‘y’); zlabel(‘z")

Fig. E1.12
2
Example E1.13: Obtain the mesh and surface plots for the function z = — 5 over the domain -2<x<6
X +y
and 2< y<8§.
Solution:

% Mesh and surface plots
xX=-2:0-1:6;

56 MATLAB: An Introduction with Applications

>>y=2:0-1:8;
>> [x,y]=meshgrid(x,y);
>> z=2%x*y 2./ (x"2+y"2) ;
>> mesh(x,vy, z)
>> xlabel ('x'); ylabel (‘y’); zlabel(‘z’)
>> surf (x,y, z)
>> xlabel (‘x")

; ylabel (y'); zlabel(‘z")

Fig. E1.13 (a)

Fig. E1.13 (b)

Example E1.14: Plot the function z =2""" dacd sin(x)cos(0.5y) over the domain 4 < x <4 and -4< y<4
using Table 1.30.

(a) Mesh plot

(b) Surface plot

(¢) Mesh curtain plot

(d) Mesh and contour plot

(e) Surface and contour plot

MATLAB Basics

57

Solution:
(@) % Mesh Plot

()

>> x=—4:0.25:4;

>>y=-4:0.25:4;

>> [x,y]l=meshgrid(x,y);

>> z=2"(-1.5*sqgrt (x*2 + y*2)) *cos (0.5*y) *sin (x) ;
>> mesh(x,y, z)

>> xlabel ('x’) ;ylabel (‘y’)

>> zlabel (‘z")

y A

Fig. E1.14 (a)

% Surface Plot

>> xXx=—-4:0.25:4;

>>y=-4:0.25:4;

>> [x,y]l=meshgrid(x,vy) ;

>> z=2.0" (-1.5*sqgrt (x"2+y"2)) *cos (0.5*y) *sin(x) ;
>> surf (x,y, z)

>> xlabel ('x'); ylabel (‘y’)

>> zlabel (‘z’")

58 ——

MATLAB: An Introduction with Applications

(0

@

-4 4

Fig. E1.14 (b)

% Mesh Curtain Plot

>>x=-4.0:0.25:4;

>>y=-4.0:0.25:4;

>> [x,y]l=meshgrid(x,vy) ;

>> 2z=2.0" (-1.5*sgrt (x"2+y"2)) *cos (05*y) *sin (x) ;
>> meshz (x,vy, z)

>> xlabel ('x’) ;ylabel (‘y’)

>> zlabel (‘z")

% Mesh and Contour Plot

>>xXx=—4.0:0.25:4;

>>y=-4.0:0.25:4;

>> [x,y]l=meshgrid(x,vy) ;

>> z=2.0"(-1.5*sgrt (x"2+y"2)) *cos (0.5*y) *sin (x) ;
>> meshc (x,vy, z)

>> xlabel ('x’) ;ylabel (‘y’)

>> zlabel (‘z’")

MATLAB Basics

59

Fig. E1.14 (c)

Fig. E1.14 (d)

(e) % Surface and Contour Plot
>>x=-4.0:0.25:4;
>>y=-4.0:0.25:4;
>> [x, y] =meshgrid(x, y);
>> 2=2.0" (-1.5*sgrt (x*2+y"2)) *cos (0.5*y) *sin(x) ;
>> surfc(x, vy, z)
>> xlabel ('x’) ;ylabel (‘y’)
>> zlabel (‘z")

60

MATLAB: An Introduction with Applications

0.5 =

-0.5

(61

y -5 "5 X

Fig. E1.14(e)

Example E1.15: Plot the function z =275+ sin(x)cos(0.5y) over the domain—4<x<4 and 4<y<4
and using Table 1.30.

(a) Surface plot with lighting

() Waterfall plot

(¢) 3-D contour plot

(d) 2-D contour plot

Solution:
(@) % Surface Plot with lighting

>> x=—4.0:0.25:4;
>> y=-4.0:0.25:4;
>> [x,y]=meshgrid(x,y) ;
>> z=2.0"(-1.5*sqrt (x*2+y"2)) *cos (0.5*y) *sin (x) ;
>> surfl(x,vy,z)
>> xlabel (‘x’) ;ylabel (‘y’)
>> zlabel(‘'z’)

MATLAB Basics

61

0.5,

-5 —4

Fig. E1.15 (a)

(b) % Waterfall Plot
>> x=-4.0:0.25:4;
>> y=—4.0:0.25:4;
>> x,y]=meshgrid(x,y) ;

>> z=2.0"(-1.5%sqgrt (x"2+y"2)) *cos (0.5%y) *xsin (x) ;

>> waterfall (x,vy,z)
>> xlabel (‘x’) ;ylabel (‘y’)
>> zlabel(‘'z’)

0150 0 el

Fig. E1.15 (b)

(¢) % 3-D Contour Plot
>> x=—4.0:0.25:4;
>> y=-4.0:0.25:4;

-
[
[
[}
[
'
[}
[l
[l

-
[l
[
[
[
[
[
[
[

62 MATLAB: An Introduction with Applications

>> [x,y]l=meshgrid(x,vy);

>> z=2.0" (-1.5%sqgrt (x"2+y"2)) *cos (0.5*y) *sin(x) ;
>> contour3 (x,y,z,15)

>> xlabel ('x’) ;ylabel (‘y’)

>> zlabel (‘'z’)

Fig. E1.15 (c)

(d) % 2-D Contour Plot
>>x=-4.0:0.25:4;
>>y=-4.0:0.25:4;
>> [x,y] =meshgrid(x,y) ;
>>z=2.0"(-1.5xsqgrt (x*2+y"2)) *xcos (0.5+y) *sin(x) ;
>> contour(x,y,z,15)
>> xlabel (‘x’) ;ylabel (‘y’)

>> zlabel (‘z’)

2l i

Fig. E1.15 (d)

MATLAB Basics

63

Example E1.16: Using the functions given in Table 1.29 for plotting x-y data, plot the following functions:

(@) f()=tcost; 0<t<10m

() x=e?,y=t; 0<t<2n

(© x=ty=e"; 0<1<2m

(d) x=¢,y=50+€e";0<r<2m
r* =3sin7t

(e) yZVSinl‘) OStSZTC
r* =3sin 4t

(f) y=rsint) OStSZTC

(g) y=tsint; 0<t<5m

Solution:
(a) % Use of plot command

®)

>> fplot (‘x*cos(x)’, [0,10*pi])

40
20
0
-20
_40 1 1 1 1 1 1
5 10 15 20 25 30
Fig. E1.16 (a)

% Semilog x command

>> t=1linspace(0,2*pi, 200) ;
>> x=exp(-2*t); y=t;

>> semilog x(x,y) ,grid

64 MATLAB: An Introduction with Applications

: : :

| TR A A R S 2
| e - SN
. T —— e e e o e o -
010* 18*‘ 1(;*2 107°

Fig. E1.16 (b)

c o Semilog y comman

(¢) % Semil d
t=linspace(0,2*pi,200) ;
>> semilog y(t, exp(-2*t)) ,grid

& z z z s s s
- -------- ------- -------- -------- --------
/N N W N S
10°° ;

0 1 2 3 4 5 6 7

Fig. E1.16 (c)

(d) % Use of loglog command
>> t=1linspace(0,2*pi,200) ;
>> x=exp (t) ;
>> y=50+exp (t) ;
>> loglog(x,y), grid

65

MATLAB Basics

103 g gy sy P o sy g P) e —— e ppy Sy Sy (o o g e p—— g

Fig. E1.16 (d)

%Use of stairs command

©

linspace (0,2*pi, 200) ;

>> t

=sgrt (abs (3*sin (7*t))) ;
r*sin(t) ;
>> stairs(t, v)

>> ¥

>> y=

>> axis ([0 pi 0 infl) ;

Fig. E1.16 (e)

% Use of bar command4

(f)

7

) .

(0,2%pi, 200

linspace

>> t

=sqgrt (abs (3*sin(4*t))) ;
r*sin(t) ;
>> bar(t,vy)

>> T

>>y=

>> axis ([0 pi 0 inf]);

66

MATLAB: An Introduction with Applications

1.5

Fig. E1.16 (f)
(g) % use of comet command
>> g=1linspace(0,5*pi,200) ;
>> y=g*sin(q) ;
>> comet (q,Vy)

15

10

—10F

5 10 15
Fig. E1.16 (g)

-15
0

Example E1.17: Consider the two matrices

3 2n [7] —151}
A=lsi 104427 | ™ BT |2n 18

Using MATLAB, determine the following:
(@) A+B
() AB

MATLAB Basics 67

(c) 42
@ 4
(e B!
(f) BAT

(e) A2+B>-AB

Solution:

(@)

®)

©

@)

(©

(2

>> A =
>> B =
A+ B
ans =
3.0000 + 7.00001
6.2832 +5.00001
>>A *B
ans =
1.0e+002 *
0.3948 + 0.21001
0.2783 + 0.08891

>>A"2
ans =

9.0000 + 31.41591
-7.0711 + 65.00001

>> inv (A)

[32*pi;5] 10 + sgrt(2)
[7 -159;2*pi 18] ;

*31;

6.2832 -15.00001
28.0000 + 1.41421

1.1310 -0.45001
2.5500 + 0.25461

81.6814 + 8.88581
98.0000 + 59.70021

ans =
0.1597 + 0.19171 -0.1150 -0.10421
0.0829 - 0.09161 0.0549 + 0.04981
>>B"-1
ans =
0-0.08171 0.0681
0+ 0.02851 0.0318

>> inv (B) * inv (A)
ans =

0.0213 - 0.01931
-0.0028 + 0.00161

>> (A™2 + B*2) -
ans =
1.0e + 002 *
-0.7948 -0.83831
0.7819 +1.00101

(A *B)

-0.0048 +0.01281
0.0047 -0.00171

0.7358 -2.16111
1.6700 - 0.60001

68 MATLAB: An Introduction with Applications

Example E1.18: Find the inverse of the following matrices using MATLAB:

320 4 25 -1 2 -5
(@ |2 -1 7) | 7 -1 6 © |4 3 7
5 49 2 37 7 -6 1

Solution:
>> clear % Clears the workspace

>>A=[320;2-17;549]; % Spaces separate matrix columns - semicolons
separate matrix rows

>>B=[-425;7-16; 237]; % Spaces separate matrix columns - semicolons
separate matrix rows

>>C=[-12-5;437; 7-61]; % Spaces separate matrix columns - semicolons
separate matrix rows

>> 1nv (A) ; % Finds the inverse of the selected matrix
>> 1nv (B) ; % Finds the inverse of the selected matrix
>> inv (C) % Finds the inverse of the selected matrix
% Inverse of A
ans =
0.4805 0.2338-0.1818
-0.2208 -0.3506 0.2727
0.1688 0.0260 0.0909
% Inverse of B
ans =
-0.1773 0.0071 0.1206
-0.2624-0.2695 0.4184
0.1631 0.1135 0.0709
% Inverse of C
ans =
0.1667 0.1037 0.1074
0.1667 0.1259 -0.0481
-0.1667 0.0296 -0.0407

Example E1.19: Determine the eigenvalues and eigenvectors of matrix A using MATLAB

4 15 35 7
(@) A=12 1 3 (b) A=|2 4 8
6 -7 9 5 6 10

MATLAB Basics

69

Solution:

(@)

(®)

A=1[4-15; 213; 6-709]
A =

4 -1 5
2 1 3
6 =7 9

$The eigenvalues of A
format short e
eig (A)
ans =
1.0000e + 001
5.857%e - 001
3.4142e + 000
$The eigenvectors of A
[Q,d]l=eig(d)

Q=
-5.5709%9e - 001 - 8.2886e - 001
-3.7139%e - 001 - 3.9659%9e - 002
-7.4278e - 001 5.5805e - 001
d=
1.0000e+ 001 O 0
0 5.8579e-001 0
0 0 3.4142e + 000
A =
3 5 7
2 4 8
5 6 10

$The eigenvalues of A
format short e
eig(A)
ans =
1.7686e + 001

-3.4295e - 001 +1.0066e + 0001
-3.4295e - 001 -1.0066e + 0001

$The eigenvectors of A
[Q,d]l=eig (A)
Q=
Column 1
5.0537e - 001
4.8932e - 001
7.1075e - 001

- 7.3925e - 001
-6.7174e - 001
-4.773%e - 002

70

MATLAB: An Introduction with Applications

Column 2
-2.0715e -001 -5.2772e - 0011
7.176%9e - 001
-3.3783e -001 +2.2223e - 0011
Column 3
-2.0715e -001 +5.2772e - 0011
7.1769e - 001
-3.3783e-001-2.2223e-0011
d =
Column 1
1.7686e + 001
0
0
Column 2
0
-3.4295e - 001 +1.0066e + 0001
0
Column 3
0
0

-3.4295e - 001 -1.0066e + 0001

Example E1.20: Determine the eigenvalues and eigenvectors of AB using MATLAB.

Solution:

30 2 1 1 3 57
o205 4 |2 -1 2 4
AT 26t BT 2 1

1 =2 3 4 4 0 6

% MATLAB Program

% The matrix “a” = A*B
>>A=[3021;1254;7-126;1-2341;
>>B=[1357;2-1-24;3211;41061;
>> a = A*B

a =
13
36
35
22

>> eig (a)

14
15
32
15

17 29
6 44
39 83
12 26

MATLAB Basics

71

Example E1.21: Solve the following set of equations using MATLAB:

ans =
98.
2
-1.
-6.

5461

.2964

3095
5329

The eigenvectors are:
>> [Q, d] =eig (a)

Q=
-0.3263
-0.3619
-0.8168
-0.3089

d =

98.5461
0
0
0

0
2
0
0

- 0.2845
0.7387
- 0.6026
0.1016

.2964

0.3908 0.

- 0.7816 - 0.

0.4769 0.

- 0.0950 0.
0 0
0 0
-1.3095 0

0 -6.5329

(@ x;+2x,+3x3+5x,=21

—2x,+5x,+ Tx3—9x, =18

S5x;+7xy+2x3—5x4=25
—x; +3x, —Tx3+7x,=30

22X —2xy—Xx3—x4=-3

X;—3x, +4x;—4x, =28
2x,+2xy = 3x5+4x,=-2

Solution:

(@)

>> A =
>> B

>> S
g =
-8

-5

3413
9215
0962
1586

[1235;-257-9;572-5;-1-3-77];

[21; 18; 25; 30];

A\B

.9896
14.

1285

.4438
3.

6128

% Therefore x,=

()

- 8.9896, x,=14.1285, x;= - 5.4438, x,=3.6128.

>>A=[1234;2-2-11;1-34-4;22-34];
>>B=[8;-3; 8;-2];

>> S =

A\B

72 MATLAB: An Introduction with Applications

2.0000
2.0000
2.0000
-1.0000

% Therefore x,=2.0000, x,=2.0000, x;=2.0000, x,= -1.0000.

Example E1.22: Use diff command for symbolic differentiation of the following functions:

@ S =¢
®) S,=3x3e"
() S;=5x*-7x*+3x+6

Solution:
(a) >> syms x
>> S1=exp (x78);
>>diff (S1)
ans =
8*x"7*exp (x”8)

(b) >>S2=3*x"3*%exp (x”5) ;
>>diff (S2)
ans =
9*x*2*exp (x*5) +15*x" 7*exp (x”5)

(€) >>83=5*x"3-7*x"2+3%x+6;
>>diff (S3)
ans =
15*x"2-14*x + 3

Example E1.23: Use MATLAB’s symbolic commands to find the values of the following integrals:

0.7 T)
(a) JO_Z | x| dx (b) _[0 (cosy+7y")dy
© Jx @ 7x°—6x* +11x° +4x> +8x+9
(e) cosa
Solution:

(a) >>symsx,y,a,b
>> Sl= abs (%)
>> int (S1, 0.2, 0.7)
ans =
9/40
() >>S2=cos (y) +7*y”"2
>> int (S2, 0, pi)
ans =
7/3*pi”3

MATLAB Basics

73

(¢) >>S3=sqgrt (x)
>> int (S3)
ans =
2/3*x™ (3/2)
>> int (S3,‘a’, ‘b’)
ans =
2/3*b™ (3/2)-2/3*a” (3/2)
>> int (S3, 0.4, 0.7)
ans =
7/150*70%" (1/2)-4/75*10" (1/2)

(d >>84 ="7*x"5-6*x"4+11*x"3+4*x"2+8*%x-9
>> int (S4)
ans =
7/6%*x"6-6/5*x"5+11/4*x"4+4/3*x"3+4*x"2-9*x

() >> S5=cos (a)
>> int (S5)
ans =

sin (a)

Example E1.24: Obtain the general solution of the following first order differential equations:

dy d’y .d
—=5f- b +3—=+y=0
(a) & 5t-6y (b) —mt3 oty
ds ds 3
—=Ax’ —=A4
© iy (d) 7 i
Solution:
(@) >>solve (‘Dy=5*t-6*y’)
ans =

5/6*t-5/36+exp (—-6*t)*Cl

(b) >>dsolve ('‘D2y +3*Dy +y =0"')
ans =
Cl*exp (1/2* (5" (1/2)-3)*t) + C2*exp (-1/2* (5" (1/2) +3) *t)

(¢ >>dsolve ('Ds =A*x"3','x’)
ans =
1/4*A*x"4 + C1

(d) >>dsolve ('‘Ds=A*x"3', ‘A’)
ans =
1/2*A%2*x"3 + C1

74 MATLAB: An Introduction with Applications

Example E1.25: Determine the solution of the following differential equations that satisfies the given initial
conditions.

d_

() 0 -7x; y(1)=0.7
d
(b) d—§=5xcoszy;y<0)=n/4
d .
© So=myre’s p)=2
dy
@) at 5y=35; y(0)=4
Solution:
(@ >>dsolve (‘Dy =-7*x"2','y (1) =0.7")
ans =

—7*x*2%t + 7*x™2 + 7/10
(b)) >>dsolve (‘Dy=5*x*cos (y) “2’,‘y (0) =pi/4’)

ans =
atan (5*t*x + 1)
(¢) >>dsolve (‘Dy=-y+exp (3*x)’, ‘y (0) =2")
ans =
exp (3*x) +exp (-t)*(-exp (3*x) +2)
(d) >>dsolve ('‘Dy + 5*y =35, ‘y (0) =4")
ans =

7 -3%exp (-5*t)

Example E1.26: Given the differential equation

d’x _dx
+7—+5x=8u(t);t=0
ar’ dt ©
Using MATLAB program, find
(a) x(¢) when all the initial conditions are zero.

(b) x(t)ywhenx (0)=1and x=2.

Solution:

(@) x (t) when all the initial conditions are zero
>> X = dsolve ('‘D2x = -7*Dx — 5*x +8’, ‘x (0) =0")
X =

8/5+ (-8/5-C2)*exp (1/2* (-7+29" (1/2))*t) + C2*exp (-1/2* (7+29"
(1/2))*t)

() x (t) whenx (0) =1and x=2
>> X =dsolve ('D2x = -7*Dx - 5*x +8’, ‘x (0) =1', ‘Dx (0) =2")

MATLAB Basics 75

X =
8/5+ (=3/10-1/290%29" (1/2))*exp (1/2* (-=7+29™ (1/2))*t)-1/290%*
(=1+3*%29™ (1/2))*29" (1/2)*exp(-1/2*(7+29" (1/2)) *t)

Example E1.27: Given the differential equation

2
Tx ™ 15e=35, 120
e e

Using MATLAB program, find
(a) x(¢) when all the initial conditions are zero.
(b) x(¢f)whenx (0)=0and x (0)=1.

Solution:
(@) x (t) when all the initial conditions are zero

>> X = dsolve ('D2x = -12*Dx - 15*x +35’, ‘x (0) =0")
X =
7/3+ (=7/3-C2)*exp ((-6+21" (1/2))*t) +C2*exp (- (6+21" (1/2))*t)

() x (t) whenx (0) =0and x (0)=1.
>> x = dsolve ('D2x = -12*Dx - 15*x + 35’, ‘x (0) =0’, ‘Dx (0) =1")
X =
7/3+ (-7/6-13/42%21" (1/2)) *exp ((-6+21" (1/2))*t)-1/126* (39+7*21"
(1/2))*21" (1/2)*exp (- (6+21" (1/2))*t)

Example E1.28: Find the inverse of the following matrix using MATLAB.

2 0
-3

s
A=12
3 1

S @

Solution:
>>A=[s20;2s-3;301];
>> inv (A)

ans =
[s/(s8%2-22), -2/ (s8%2-22), -6/ (8%2-22)1]
[-11/(s"2-22), s/ (s"2-22), 3*xg/(8"2-22)1]
[-3*s/(s"2-22), 6/(s%2-22), (s®2-4)/(s%2-22)1

Example E1.29: Expand the following function F(s) into partial fractions using MATLAB. Determine the

i Laplace transf fFS)= 7T =3-
inverse Laplace transform of F(s) NI

76

MATLAB: An Introduction with Applications

Solution:
The MATLAB program for determining the partial fraction expansion is given below:

>>b=[00001];
>>a=[15700];
>> [r, p, k]l = residue (b, a)

r =
0.0510 -0.06481
0.0510 +0.06481

-0.1020
0.1429
p=
-2.5000 + 0.86601
-2.5000 - 0.86601
0
0
k=11

% From the above MATLAB output, we have the following expression:
F(s)= dl + 5 + 5 + fa
S=Dh S™D, STPDy STDy
0.0510—-0.0648i 0.0510+0.0648i —0.1020 0.1429
F(s)= —+ —+ +
5§ —(=2.5000+0.8660:) s—(—2.5000-0.8660i) s—0 s—=0

% Note that the row vector k is zero implies that there is no constant term in this example problem.
% The MATLAB program for determining the inverse Laplace transform of F(s) is given below:
>> syms s
>>f=1/(s"4 +5%s™3 + 7*s"2) ;
>> ilaplace (£)
ans =
1/7*t-5/49+5/49%exp (-)*cos (1/2*3%" (1/2)*t) +11/147*exp (-5/2*t) *3"
(1/2) *sin(1/2*3%(1/2) *t)
Example E1.30: Expand the following function F(s) into partial fractions using MATLAB. Determine the

inverse Laplace transform of F(s).

552 +3546

F(s) =
() s 37+ 752+ 95+ 12

Solution:
The MATLAB program for determining the partial fraction expansion is given below:

>>b=[00536];
>>a=[137912];

>> [r, p, k] = residue (b, a)

MATLAB Basics 77
r =
-0.5357 - 1.03941
-0.5357 + 1.03941
0.5357 - 0.18561
0.5357 + 0.18561
p:
-1.5000 + 1.32291
-1.5000 - 1.32291
-0.0000 + 1.73211
-0.0000 - 1.73211
k=11
% From the above MATLAB output, we have the following expression:
F(s)= U B S

S=p S™P, STPy STD4
—0.5357-1.0394i + (—0.5357+1.0394i)
s—(-1.500+1.3229i) s—(-1.5000—-1.3229i)

, 0:5357-0.1856i —0.5357+0.1856i
s—(=0+1.7321i) s—(-0—1.7321i)

F(s)=

% Note that the row vector k is zero implies that there is no constant term in this example problem.
% The MATLAB program for determining the inverse Laplace transform of F(s) is given below:
>> syms s
>>f = (5*%¥s8™2 + 3*s +6) / (8™4 + 3*s™3 + 7*gs™2 + 9*s5 +12) ;
>> ilaplace(f)
ans =
11/14*exp (-3/2%t)*7"(1/2)*sin(1/2*7"(1/2)*t) -15/14*exp (-3/
2*%t)*cos (1/2*77(1/2)*t) +3/14*3" (1/2)*sin (3" (1/2)*t)+15/
l4*cos (37 (1/2) *t)

Example E1.31: For the following function F{(s):

s 4357 +55° +7s+25
st +55° +20s% + 405 + 45

F(s)=

Using MATLAB, find the partial fraction expansion of F(s). Also, find the inverse Laplace transformation of
F(s).
Solution:

s 357 +557 +7s+25
s +55% +20s +40s + 45

F(s)=

The partial fraction expansion of F(s) using MATLAB program is given as follows:
num=[1 3 5 7 25];
den=[1 5 20 40 45];
[r, p, k] = residue (num, den)

78

MATLAB: An Introduction with Applications

.23131
.23131
.47021
.47021

-1.3849 +
-1.3849
0.3849
0.3849 +

|
O o+ R

-0.8554 + 3.00541
-0.8554 - 3.00541
-1.6446 +1.37991
-1.6446 - 1.37991

From the MATLAB output, the partial fraction expansion of F(s) can be written as follows:
U SN NI Ny
(s=p) (s=p)) (s—p3) (s—p,)
_ (-1.3849+ 1.2313) N (—1.3849 - j1.2313)
(s+0.8554—-3.005 (s+0.8554+ ;3.005)
N (0.3849—0.4702) N (0.3849+ ;0.4702) +1
(s+1.6446— j1.3799 (s+1.6446+ j1.3779)

F(s)=

H(s)

Example E1.32: Obtain the partial fraction expansion of the following function using MATLAB:

Fis)= 8(s+1)(s+3) i
(s+2)(s+4)(s+6)
Solution:
Fls)= 8(s+1)(s+3) B (8s+8)(s+3)

(5 +2)(s+4A)(s+6)° (57 +65+8)(s’ +125+36)

The partial fraction expansion of F(s) using MATLAB program is given as follows:
EDU>> num=conv([8 8], [1 3]);
EDU>> den=conv ([l 6 8], [1 12 36]);
EDU>> [r, p, k]l= residue (num, den)
r =
3.2500

15.0000

-3.0000

-0.2500

-6.0000
-6.0000
-4.0000
-2.0000

MATLAB Basics 79

From the above MATLAB result, we have the following expansion:

U n 3 I
F(s)= + + +
(s=p) (-p) (—p3) (s—py)

3.25 15 -3 -0.25
= + + + +
(s+6) (s—15) (s+3) (s+0.25

It should be noted here that the row vector & is zero, because the degree of the numerator is lower than that
of the denominator.

F(s)=3.25¢"" +15¢" -3¢ - 0.25¢ ">

+k

F(s)

Example E1.33: Find the Laplace transform of the following function using MATLAB.
(@) f()=Tcos(5t+60°)
b) f@O)=-Tre™
(©0 f(®)=-3cos5t
d f(O=tsinTt
(e) f(=5e?*cos5t
() f(H)=3sin(5t+45°%
(9) f(H=5e3"cos(t—45°
Solution:
% MATLAB Program
(@) >>syms t % tell MATLAB that “t” is a symbol.
>> f =7 * £t"3*%cos (5*t + (pi/3)); % define the function.
>> laplace(£)

ans =
-84/ (s8"2+25) "3%s8™2+21/ (872+25) "2+4336* (1/2%xs-5/2%x3"(1/2))/
(s%2+25) "4*s*3-168% (1/2%s-5/2%x3"(1/2))/ (s72+25) *3xs
>> pretty (laplace(f)) % the pretty function prints symbolic output

[)

% in a format that resembles typeset mathematics.

0452) 336(;s—§(3)1’2)s% 168(;s—§(3)1/2)s
—04s

+ + -
(s> +25)° (s°+25) (s* +25)* (s +25)°

() >> syms t x
>> f = -7*t*exp (-5*t) ;
>> laplace (f, x)
ans =
-7/ (x + 5)7*2

(¢) >>syms t x
>> f = -3*cos (5*t) ;
>> laplace (f, x)
ans =
-3*x/(x"2 + 25)

80 MATLAB: An Introduction with Applications

(d) >>syms t x
>>f = t*sin(7*t) ;
>> laplace(£, x)
ans =
1/ (x"2+49) *sin(2*atan(7/x))

(e) >>syms t x
>>f = S5*exp(-2*t) *cos (5*t) ;
>> laplace (f, x)
ans =
5% (x+2) / ((x+2) "2+425)

(f) >>syms t x
>>f = 3*sin(5*t+ (pi/4));
>> laplace(£, x)
ans =
3% (1/2*x*2"(1/2)+5/2*27(1/2)) / (x*2 + 25)
(g >>syms t x
>>f = 5*exp (-3*t) *cos (t-(pi/4));
>> laplace(£, x)
ans =
5* (1/2*% (x + 3)*2°(1/2)+1/2*2"(1/2))/ ((x + 3)"2 + 1)

Example E1.34: Generate partial-fraction expansion of the following function:
F(s) = 10°(s +7)(s +13)
s(s+25)(s+55)(s” + 75+ 75)(s” + 7s +45)

Solution:
Generate the partial fraction expansion of the following function:
numg=poly[-7 -13];
numg=poly ([-7 -13]);
deng=poly ([0 -25 -55 roots ([1 7 75])"' roots ([1 7 45])"'1);
[numg, deng] =zp2tf (numg',deng', leb5) ;
Gtf=(numg, deng) ;
Gtf=tf (numg, deng) ;
G=zpk (Gtf) ;
[r,p,k]l=residue (numg, deng)

1.0e - 017*
0.0000
-0.0014
0.0254
-0.1871
0.1621
-0.0001
0.0000
0.0011

MATLAB Basics 81

.0e + 006~
.6406
.4250
.3029
.0336
.0027
.0001
.0000

OO0 oo o R bRl

k=11

Example E1.35: Determine the inverse Laplace transform of the following functions using MATLAB.

K 1
(a) F(»‘)—m (b) F(S)=m
3s5+1 _ s—25
© FO=m 0579 @ F&) =13 35120)
Solution:
(a) >> syms s

()

(©

@)

>>f =s/(s*((s +2)*(s +6)));
>> ilaplace(£)
ans =

1/2*exp (-4*t) *sinh (2*t)

>> gyms s
>> f=1/((s"2)*(s + 5));
>> ilaplace(f)
ans =
1/3*t — 2/9%exp (-3/2*t) *sinh(3/2*t)
>>syms s
>>f = (3*s +1)/(8"2 +2*%s + 9);
>> ilaplace(£)
ans =
3*exp (-t) *cos (2*2" (1/2) *t)-1/2*2" (1/2) *exp (-t) *sin (2*2" (1/2) *t)
>>syms s
>> f = (s -25)/(s* (8”2 + 3*s +25)) ;
>> ilaplace(£)
ans =

5/4*exp(-3/2*t)*cos (1/2*71°(1/2)*t)+23/284*71"(1/2) *exp
(-3/2*t)*sin(1/2*71%(1/2) *t) -5/4

Example E1.36: Find the inverse Laplace transform of the following function using MATLAB.

(s> +9s+7)(s+7)

G(s) = .
(s+2)(s +3)(s> +125+150)

82

MATLAB: An Introduction with Applications

Solution:

% MATLAB Program

>> syms s % tell MATLAB that “s” is a symbol.

>>G = (872 4+ 9*s +7)* (s + 7)/[(s +2)*(s +3)*(s™2 + 12*s + 150)]; % define

the function.
>>pretty (G) % the pretty function prints symbolic output

[}

% in a format that resembles typeset mathematics.
(s+9s+T)(s+7)
(s+2)(s+3)(s+125s+150)

>> g = 1laplace(G); % inverse Laplace transform
>>pretty(9)

exp(—6t)cos(114”1)

44 2915
=7/26 -20)+— =3t)+
eXp(=20)+ o3 exp(530+ 3¢
889 .
+mexp(—6t)l 142 sin(114"°¢)

Example E1.37: Generate the transfer function using MATLAB.

~ 3(s+9)(s+21)(s+57)
(s +30)(s> +55+35)(s* +285+42)

G(s)

using
(a) the ratio of factors
(b) the ratio of polynomials

Solution:

% MATLAB Program

‘a. The ratio of factors’

>>Gzpk = zpk ([-9 -21 -57] , [0 -30 roots([1 5 35]) 'roots ([l 28 42])'],3)
% zpk is used to create zero-pole-gain models or to convert TF or

% SS models to zero-pole-gain form.

‘b. The ratio of polynomials’

>> Gp = tf (Gzpk) % generate the transfer function

% Computer response:

ans =
(a) The ratio of factors
Zero/pole/gain:
3 (s19) (s+21) (s+57)
s(s+30) (s+26.41) (s+1.59) (s”2 + 55 + 35)
ans =

(b) The ratio of polynomials
Transfer function:

353 +2615"2+5697 s + 32319
76 + 63 575 + 1207 s°4 + 7700 s”3 + 37170 s”2 + 44100 s

MATLAB Basics 83

Example E1.38: Generate the transfer function using MATLAB.

st 4205 +2752 +17s+35

G(s)=
() $° +8s* +95° +20s* +29s +32

using
(a) the ratio of factors
(b) the ratio of polynomials
Solution:
% MATLAB Program
% a. the ratio of factors
>>Gtf = tf£([1 202717 35] , [18 92029 32]) % generate the
% transfer function
% Computer response:

Transfer function:

s™+205"3+27s5"2+ 175 +35
s™M+85"3+9sM2+20s +29
% b. the ratio of polynomials
>> Gzpk = zpk (Gtf) % zpk is used to create zero-pole-gain models
% or to convert TF or SS models to zero-pole-gain form.
% Computer response:

Zero/pole/gain:

(s+18.59) (s+1.623) (s"2 — 0.214s + 1.16)
(s+7.042) (s+1.417) (s"2 — 0.4593s + 2.906)

1.22 SUMMARY

In this chapter, the MATLAB environment which is an interactive environment for numeric computation,
data analysis and graphics was presented. Arithmetic operations, display formats, elementary built-in
functions, arrays, scalars, vectors or matrices, operations with arrays including dot product, array
multiplication, array division, inverse and transpose of a matrix, determinants, element by element operations,
eigenvalues and eigenvectors, random number generating functions, polynomials, system of linear equation,
script files, programming in MATLAB, the commands used for printing information and generating 2-D and
3-D plots, input/output in MATLAB was presented with illustrative examples. MATLAB’s functions for
symbolic mathematics were introduced. These functions are useful in performing symbolic operations and
developing closed-form expressions for solutions to linear algebraic equations, ordinary differential equations
and systems of equations. Symbolic mathematics for determining analytical expressions for the derivative
and integral of an expression was also presented.

84

REFERENCES

Chapman, S.J., MATLAB Programming for Engineers, 2" ed., Brooks/Cole, Thomson Learning, Pacific
Grove, CA, 2002.

Dukkipati, R.V., Analysis and Design of Control Systems using MATLAB, New Age International Publishers,
New Delhi, India, 2006.

Dukkipati, R.V. and Shivakumar, M. R., MATLAB for Electrical Engineers, New Age International Publishers,
New Delhi, India, 2007.

Dukkipati, R.V. and Srinivas, J., Solving Engineering Mechanics Problems with MATLAB, New Age
International Publishers, New Delhi, India, 2007.

Dukkipati, R.V., MATLAB for Engineers, New Age International Publishers, New Delhi, India, 2006.

Dukkipati, R.V., Solving Engineering System Dynamics Problems with MATLAB, New Age International
Publishers, New Delhi, India, 2006.

Dukkipati, R.V., Solving Vibration Analysis Problems with MATLAB, New Age International Publishers,
New Delhi, India, 2006.

Etter, D.M., Engineering Problem Solving with MATLAB, Prentice-Hall, Englewood Cliffs, NJ, 1993.
Gilat, Amos., MATLAB-An Introduction with Applications, 2" ed., Wiley, New York, 2005.

Hanselman, D. and Littlefield, B.R., Mastering MATLAB 6, Prentice-Hall, Upper Saddle River, New Jersey, NJ,
2001.

Herniter, M.E., Programming in MATLAB, Brooks/Cole, Pacific Grove, CA, 2001.
Magrab, E.B., An Engineers Guide to MATLAB, Prentice-Hall, Upper Saddle River, New Jersey, NJ, 2001.
Marchand, P. and Holland, O.T., Graphics and GUIs with MATLAB, 3"4ed., CRC Press, Boca Raton, FL, 2003.

Moler, C., The Student Edition of MATLAB for MS-DOS Personal Computers with 3-1/2" Disks, MATLAB
Curriculum Series, The MathWorks, Inc., 2002.

Palm, W.J. 1L, Introduction to MATLAB 7 for Engineers, McGraw-Hill, New York, NY, 2005.

Pratap, Rudra, Getting Started with MATLAB—A Quick Introduction for Scientists and Engineers, Oxford
University Press, New York, NY, 2002.

Sigman, K. and Davis, T.A., MATLAB Primer, 6" ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2002.

The MathWorks, Inc., MATLAB: Application Program Interface Reference Version 6, The MathWorks, Inc.,
Natick, 2000.

The MathWorks, Inc., MATLAB: Creating Graphical User Interfaces, Version 1, The MathWorks, Inc., Natick,
2000.

The MathWorks, Inc., MATLAB: Function Reference, The MathWorks, Inc., Natick, 2000.
The MathWorks, Inc., MATLAB: Release Notes for Release 12, The MathWorks, Inc., Natick, 2000.

The MathWorks, Inc., MATLAB: Symbolic Math Toolbox User's Guide, Version 2, The MathWorks, Inc.,
Natick, 1993-1997.

The MathWorks, Inc., MATLAB: Using MATLAB Graphics, Version 6, The MathWorks, Inc., Natick, 2000.

MATLAB: An Introduction with Applications

MATLAB Basics

PROBLEMS

P1.1: Compute the following quantity using MATLAB in the Command Window:
1715 1] 571ogy ()
[152 —132} /121

P1.2: Compute the following quantity using MATLAB in the Command Window:

85

+ 1n(e4) +11

tan x +sin 2
B=w+log|x5—x2|+coshx—2tanhx; for x =5m/6.

COoSXx

P1.3: Compute the following quantity using MATLAB in the Command Window:

N7y,
v arP@ED) L a (NP oy 19810€ oG g— 3tanhb
¢ Jlab| ez logjo(a-+b-+c)

fora=1,b=2andc=1.8.
P1.4: Use MATLAB to create
(@) arow and column vectors that has the elements: 11, -3, ¢’-%, In(59), tan(p/3), 5 log,,(26).
(b) arow vector with 20 equally spaced elements in which the first element is 5.

(¢) acolumn vector with 15 equally spaced elements in which the first element is —1.

P1.5: Enter the following matrix 4 in MATLAB and create:

1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
A=|17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40

(@) a4 x 5matrix B from the 1%, 3" and the 5™ rows, and the 1%, 274, 4th and 8™ columns of the matrix 4.
(b) a 16 element-row vector C from the elements of the 5™ row, and the 4™ and 6 columns of the matrix 4.

1.
V2+0.02 e

8
P1.6: Given the function y = (x Inx. Determine the value of y for the following values of

x:2,3,8,10,-1,-3,-5,-6.2. Solve the problem using MATLAB by first creating a vector x, and creating
a vector y, using element-by-element calculations.

P1.7: Define a and b as scalars, a = 0.75, and b = 11.3, and x, y and z as the vectors, x = 2, 5, 1, 9,
y=0.2,1.1,1.8,2and z=-3, 2, 5, 4. Use these variables to calculate 4 given below using element-by-element
computations for the vectors with MATLAB.

86

MATLAB: An Introduction with Applications

z, Y
— 4=
x1‘1y7225 x 2
= +a
(a+b)b/3 Za
P1.8: Enter the following three matrices in MATLAB
1 23 12 =5 4 7 13 4
A=|-8 5 7|, B=|7 11 6|, C=|-2 8 -5
-8 4 6 1 8 13 9 —6 11

and show that

(@) A+B=B+4

b) A+B+C)=A+B)+C

(© 7A+O)=T7(4)+7(C)

d A*(B+C)=A*B+A*C

P1.9: Consider the polynomials

py(s)=5+552+3s+10
py(s)=s*+7s3+ 552 +8s+ 15
Pi(8)=5>+155*+ 105> + 65>+ 35+ 9

Determine p,(2), p,(2) and p;(3).

P1.10: The following polynomials are given:
pyx)=x>+2x*=3x° + 7x2 - 8x+7
pyx)=x*+3x—5x2 + 9x + 11
pyx)=x>—2x*—3x+9
D4(x) =x>-5x+13
ps(x)=x+5

Use MATLAB functions with polynomial coefficient vectors to evaluate the expressions at x = 2.

P1.11: Determine the roots of the following polynomials:

(@) p,x)=x"+8x0+5x +4x*+3x3 + 22 +x+1

(b) py(x)=x8—Tx0+7x> + 15x* — 10x> - 8x? + Tx + 15

(©) pyx)=x>—13x*+10x>+12x2+ 8x— 15

d p,x) =x*+ 73+ 12x2 - 25x + 8

(e ps(x)= x3+15x2-23x+ 105

(f) pg(x)=x>—18x+23

@ pyx)=x+7
P1.12: An aluminium thin-walled sphere is used as a marker buoy. The sphere has a radius of 65cm and
a wall thickness of 10 mm. The density of aluminium is 2700 kg/m>. The buoy is placed in the ocean where

the density of the water is 1050 kg/m?. Determine the height H between the top of the buoy and the surface
of the water.

MATLAB Basics 87

Fig. P1.12

P1.13: Determine the values of x, y and z for the following set of linear algebraic equations:
Xy —3x,=-T7
2x,+3x,—x;=9
4x, +5x, - 2x,=15
P1.14: Write a simple script file to find (a) dot product, (b) cross-product of 2 vectors:
a :]A'*/g and b =31 —
P1.15: Write a function to find gradient of f(x, y) = x>+ y>— 2xy + 4 at (a) (1,1), (b) (1,- 2) and (c) (0,— 3).
Use the function name from command prompt.
P1.16: Write MATLAB functions /= x>— 3x + 1 and g = ¢* — 4x + 6 and find the result £(127)/g(5) from
a script file.
P1.17: Plot the function y = |x| cos (x) for 200 < x < 200.
P1.18: Plot the following functions on the same plot for 0 < x < 2x using the plot function:
(@) sin®(x)
(b) cos’x
(c) cos(x)
P1.19: Plot a graph of the function y = 45 sin(0.4¢) for ¢ €[0, 3].

P1.20: Consider the function z = 0.56 cos(xy). Draw a surface plot showing variation of z with x and y.
Given xe [0, 10] and ye [0,100].

P1.21: Figure P1.21 shows two boats: boat 4 travels south at a speed of 10 mph, and boat B travels east
at a speed of 19 mph. The ships are positioned at 8 a.m. are also shown in figure. Write a MATLAB program
to plot the distance between the ships as a function of time for the next 5 hours.

y
I:]ant A
* .
Boat B 16 miles
» X
< 30 miles —»
v

Fig. P1.21

88

MATLAB: An Introduction with Applications

P1.22: Consider the given symbolic expressions defined below:
S1=2/(x—-5)"; S2="x"5+9*x—15;S3="(x"3+2*x+9) * (x *x—-5)’;
Perform the following symbolic operations using MATLAB.

(a) S182/53 (b) S1/8253 (c) S1/(S2)? (d) S183/82 (e) (52)*/(S153)
P1.23: Solve the following equations using symbolic mathematics:
(@) x*+9=0

b)) x*+5x-8=0

() ¥+11x*-7x+8=0

(d) x*+11x3+7x*—19x+28=0
(e) x7—8x°+7x*+5x>-8x+9=0

P1.24: Determine the values of x, y and z for the following set of linear algebraic equations:

2x+y—-3z=11
4x—-2y+3z=8
2x+2y—z=-6

P1.25: Figure P1.25 shows a scale with two springs.

Fig. P1.25

The two springs are unstretched initially and will stretch when a mass is attached to the ring and the ring will
displace downwards a distance of x. The weight I of the object is given by

- %w—zoxbﬂ)

where /= initial length of a spring = /42 1 p?
and ¢ = the stretched length of the spring = /4* + (b + x)* .

If k= spring constant,

Write a MATLAB program to determine the distance x when W=350N. Givena = 0.16 m, b = 0.045 m,
and the spring constant £ = 3000 N/m.

P1.26: Determine the solutions of the following first-order ordinary differential equations using MATLAB’s
symbolic mathematics.

(@) y'=8x%+ 5 with initial conditiony(2)=0.5.

MATLAB Basics 89

(b) ¥’ =>5xsin*(y) with initial condition y(0) =1t/5.
(¢) ¥’ =7Txcos*(y) with initial condition y(0)=2.
(d) y'=-5x+y with initial condition y(0)=3.

(e) ¥’ =3y+e > withinitial conditiony(0)=2.

P1.27: For the following differential equations, use MATLAB to find x(#) when (a) all the initial conditions
are zero, (b) x(¥) when x (0) = 1 and x(0)=-1.

2 2
(@) %JrlO%Jer:ll (b) %77%73&:5
t t
d’x .d d’x d
© G @ g T

P1.28: Figure P1.28 shows a water tank (shaped as an inverted frustum cone with a circular hole at the
bottom on the side).

0.025m

Fig. P1.28 Water tank
The velocity of water discharged through the hole is given by v =,/2g)y where /& = height of the water and

g = acceleration due to gravity (9.81 m/s?). The rate of discharge of water in the tank as the water drains out

2 2
through the hole is given by: & _ —i”z
dt (2—-0.5y)

MATLAB program to solve and plot the differential equation. Assume, that the initial height of the water is 2.5 m.

where y = height of water and r, = radius of the hole. Write a

P1.29: An airplane uses a parachute (see Fig. P1.29) and other means of braking as it slow down on the
runway after landing. The acceleration of the airplane is given by a=-0.005v — 4 m/s?

—V |_>X
e

A A S

Fig. P1.29

90

MATLAB: An Introduction with Applications

Considering the airplane with a velocity of 500km/h opens its parachute and starts decelerating at
t = 0 second, write a MATLAB program to solve the differential equation and plot the velocity from
t = 0 second until the airplane stops.

P1.30: Obtain the first and second derivatives of the following functions using MATLAB’s symbolic
mathematics.

(@) F(x)=x>—8x*+5x> ~7x?+11x -9

(b) Fx)=@>+3x-8)(x*+21)

(c) Fx)=0x>-8x2+5x+9)/(x+2)

(d) F(x)=(x>—3x*+5x> + 8x2 — 13)?

(e) F(x)=(x>+8x—11)/(x"—7x0+5x>+9x - 17)
P1.31: Determine the values of the following integrals using MATLAB’s symbolic functions.

(a) '[(SX7 —x" +3x’ —8x? —|—7) dx
(b) fx/;cosx

(© fx2/3 sin? 2x
1.8

2

*x?sinx dx
@ J,,
—0.2
(@) f |l
1 1
P1.32: Use MATLAB to calculate the following integral: f —— dx
0 0.8x" +0.5x +2

10
2 .4
P1.33: Use MATLAB to calculate the following integral: _[cos”(0.5x)sin” (0.5x)dx
0

P1.34: The variation of gravitational acceleration g with altitude y is given by:

where R = 6371 km is radius of the earth and g = 9.81 m/ s? is gravitational acceleration at sea level.

The change in the gravitational potential energy AU of an object that is raised up from the earth is given by:

AU= ngdy
0

MATLAB Basics 91

Determine the change in the potential energy of a satellite with a mass of 500 kg that is raised from the surface
of the earth to a height of 800 km.

P1.35: Find the Laplace transform of the following function using MATLAB:
f()=Tcos(5t+ 60°)
P1.36: Use MATLAB program to find the transforms of the following functions.
@ f(y=-Tte
() f()=-3cos5t
(¢) f(@®)=tsinTt
(d f()=5e2cos5t
(e) f(6)=3sin(5t+45°%
(f(H=5e3"cos(t—45°

P1.37: Consider the two matrices

1 0 2 7 8 2
A=[2 5 4|and B=[3 5 9

-1 8 7 -1 3 1

Using MATLAB, determine the following:

(@ A+B

(b) 4B

© 4

@ A"

(e) B!

(H BTAT

(g) A*+B>-AB
(h) determinant of 4, determinant of B and determinant of 4B.

P1.38: Use MATLAB to define the following matrices:

2 1 s 3 2 3
A=10 5], Bz[], C=|-5 2], D=[12]
-2 4
7 4 0 3
Compute matrices and determinants if they exist.
(@) (ACT)?!
(®) B
(©) 14CT|
@ (CT4)!
P1.39: Consider the two matrices
1 01 7
A=|2 3 4| and B=|3

NSV, TN
—_— N N

-1 6 7 -

—

92

MATLAB: An Introduction with Applications

Using MATLAB, determine the following:
(a) A+B
(b) AB
(c) A%
@) A"
(e) B!
(f) BAT
(g) A>+B*- 4B
(h) det 4, det B and det AB.

P1.40: Find the inverse of the following Matrices:

[3 2 1]
(@ 4=|-1 5 4
|5 7 -9
1 6 3]
() B=|-4 -5 17
|8 4 2
(-1 =2
(o0 C=|-4 7 2
|7 -8 -1

P1.41: Determine the eigenvalues and eigenvectors of the following matrices using MATLAB.

1 =2 1 5
A= , B=
1 5 -2 7

4 6 2
P1.42: If A=|5 6 7
10 5 8

Use MATLAB to determine the following:
(a) the three eigenvalues of 4
(b) the eigenvectors of 4
(¢) Show that AQ = Od where Q is the matrix containing the eigenvectors as columns and d is the
matrix containing the corresponding eigenvalues on the main diagonal and zeros elsewhere.

P1.43: Determine eigenvalues and eigenvector of A using MATLAB.

W@ o] 05 08
DA 075 10

8 3
o el]

MATLAB Basics 93

P1.44: Determine the eigenvalues and eigenvectors of the following matrices using MATLAB.

1 =2
(@) A=[1 3}

1 5
(b) A=[_2 4}

P1.45: Determine the eigenvalues and eigenvectors of 4 * B using MATLAB.

3 -1 2 1 1 2 5 7

1 2 7 4 2 -1 2 4
A: , B:

7 -1 8 6 32 5 1

1 -2 3 4 4 1 3 6

P1.46: Determine the eigenvalues and eigenvectors of 4 and B using MATLAB.

4 5 3 1 2 3
A=|-1 2 3|, B=|8 9 6
2 5 7 5 3 -1
P1.47: Determine the eigenvalues and eigenvectors of 4 = a * b using MATLAB.
(6 -3 4 1
0 4 2 6
Tl o3 8 s
2 2 1 4
K 1 2 3
4 6 -1
b= |1 4 2
2 -3 6

P1.48: Determine the values of x, y and z for the following set of linear algebraic equations:
X, —3xy =7
2%, +3x,-x; =9
4x, +5x,—2x, = 15

P1.49: Determine the values of x, y and z for the following set of linear algebraic equations:

2x-y=10
Xx+2y-z=0
-y +z=-50
P1.50: Solve the following set of equations using MATLAB.
(a) 2, +x, X, —x, = 12

x1+5x275x3+6x4 =35
f7x1+3x277x375x4 =17
x175x2+2x3+7x4 =21

94

MATLAB: An Introduction with Applications

b) X=X, +3x;+5x, =7
2%t x,—x;tx, =6

=X, —X,—2x;+2x, =5
x1+x2—x3+5x4 =4

P1.51: Solve the following set of equations using MATLAB.

(a) 2, +x,tx;—x, =10

X, +5x,—5x;+6x, =25

~Tx, +3x,=Tx;=5x,= 5

X, = 5x,+2x;+ 7x, = 11

b)) x;—x,+3x;+5x,=5

2%, +x,—x;tx, =4
|~ X, T 2x,+2x, =3
X, tx,—x;+5x, =1

—X

P1.52: Solve the following set of equations using MATLAB.
(@ x;+2x,+3x;+5x,=21
—2x, +5x,+ Tx; - 9x, =17
Sx,+Tx, +2x;-5x,=23
—x; —3x, = Tx;+7x, =26
(b) x,;+2x,+3x;+4x,=9
2%, =2x, —x3+x,=-5
Xy =3x,+4x;—4x, =7
2x, +2x,—3x; +4x,=-6

P1.53: Determine the inverse of the following matrix using MATLAB.

3s 2 0
A=|T7s —-s -5
3 0 35

P1.54: Expand the following function F(s) into partial fractions with MATLAB:

55+ 75 +8s+30
s*+155° + 625 +855+25
P1.55: Determine the Laplace transform of the following time functions using MATLAB.

(@ fO=ut9)

) fH=¢e"

() f(O=(5t+T)

@) f()=5u(r)+8eT — 12
(e f(O=e'+98-7t2+8
() fO=Tt 45—t

(@ f(O=9%ut+5e™

F(s)=

MATLAB Basics

P1.56: Determine the inverse Laplace transform of the following rotational function using MATLAB:
7 B 7
45546 (s+2)(s+3)
P1.57: Determine the inverse transform of the following function having complex poles
15
(s* +5s> +11s+10)

P1.58: Determine the inverse Laplace transform of the following functions using MATLAB:

F(s)=

F(s)=

s
(@ F(s)= s(s+2)(s+3)(s+5)
. __
(b) F(s) (s +7)
(© F(S)=35S—+9

(s +8S+5)
(d) F(s)=zs_¢'

S(S +9S+33)

(ONORO)

Thispage
Intentionally left
blank

CHAPTER

ELECTRICAL CIRCUITS

2.1 INTRODUCTION

In this chapter, we briefly review the three types of basic passive electrical elements: resistor, inductor and
capacitor.
Resistance Elements: Ohm s Law: The voltage drop V' across a linear resistor is proportional to the current
ir flowing through the resistor, where the constant of proportionality is the resistance R as shown in Fig. 2.1.
i R
O—— " WM\ ——0

+—p
Vr

Fig. 2.1
VR =R iR
Resistors do not store electrical energy in any form but dissipate it as heat. The rate of energy dissipated

(power consumed) by a resistor is given by

20 Ve

P=ixR= Tf (W or I/s)
Resistors in Series: The current i passes through each element as shown in Fig. 2.2(a). The total voltage
drop is given by the sum of the voltage drops across each element, or

V=v,+V,
Applying Ohm’s law, we obtain

iReq = iR\ + iR,
or Ryg=Ri+ Ry
The voltage drop across each resistor is then given by

98

MATLAB: An Introduction with Applications

R
Vv, = 2y
and 2 (R1 +R2J
R i
—— VMWW ——
i Ry i R i I I
o——\NNNVN—"—" NV NN\ ——0 —>e ——>
— V4 4447 V, ————p R, P
< v . VW
I« \'% al
(a) Resistors in series (b) Resistors in parallel

Fig. 2.2

Resistors in Parallel: All the elements in the case have the same voltage applied across them as shown in
Fig. 2.2 (b).
i=ij+i

Applying Ohm’s law, we get

V VoV
_—
Req Rl RZ
— R1R2
or eq R1 + R2 (21)

If there are n resistors, we can write

1 1 1 1
=—adt—+e+—
Ry, R R R

n

Solving eq. (2.1) for the currents i, and i,, we obtain

Inductance Elements: The voltage V; across the inductor L is given by (see Fig. 2.3)

di
v, = L—-
L dt
, L
o TN—
+— 5
\'A
Fig. 2.3

where i; is the current through the inductor.

99

Electrical Circuits

The energy stored in an inductance is

1 1
= —]i2=— 7)) 2
E 2 Li 5 L(q)
where ¢ is the electrical charge.

The voltage drop in an inductance is

Vi=Li =Lq
Inductances in Series: Since the voltage drop through an inductor is proportional to the inductance L, we
have (Fig. 2.4 (a))

Leq: Ll + L2
L,

[E— _— *r—
L A

L

(a) Inductances in series (b) Inductances in parallel
Fig. 2.4 Inductances

Inductances in Parallel: Referring to Fig. 2.4 (b), we have

LL,
Leg= A
1+ 1y
Similarly, for » inductors
1 1 1 1
_— = —
Leq Ll LZ Ln

Capacitance Elements: Capacitance C is a measure of the quantity of charge that can be stored for a given
voltage across the plates. The capacitance C of a capacitor is given by

c=1
v

c

where ¢ is the quantity of charge stored and V. is the voltage across the capacitor.

d
Since i = 7? and V, = ¢g/C, we have

dv
i=C—=
dt
dv,.= l'alt
or =l
1
Hence V,=—li.dt

C

100

MATLAB: An Introduction with Applications

This is shown in Fig. 2.5.

Fig. 2.5 Capacitor

The energy stored in a capacitor is given by

E= : cr?
2
The voltage drop across capacitor is given by
= 1 = JL df
©c C C

Capacitors in Series:
Referring to Fig. 2.6 (a) we have

__ GG
G +G,
For n capacitors
1 1 1 1
_— = —
Ceq Cl C2 Cn

Capacitors in Parallel:
For capacitors in parallel (see Fig. 2.6 (b))

Ceq = Cl + C'2
C
C
K K ,
N N Cz
(a) Capacitors in series (b) Capacitors in parallel

Fig. 2.6 Capacitor

2.2 ELECTRICAL CIRCUITS

In this section, we apply Ohm’s law to series and parallel circuits to determine the combined resistance of

the given circuit.

Series Circuits: The combined resistance of series-connected resistors of a simple series circuit is given
by the sum of the individual resistances. The voltage between points 4 and B of the simple series circuit

shown in Fig. 2.7 is given by

Electrical Circuits

101

A O—m—"\VNVWN—"VWVWN—" VNNV —OB
\%

L

Fig. 2.7 Series circuit

V: Vl + V2 + V3
where Vi =IiR,
V2 = lR2
and V3 = lR3
14
Hence — =R +R,+ R
i

Therefore, the combined resistance R of the series circuit is given by

R=R +R)+ R5

Parallel Circuits: For the parallel electrical circuit shown in Fig. 2.8, we can write

. 14
i = —
R,
h=—
2
%
and i3 = .
3
i
oF—> iy
Vv R,
O

Fig. 2.8 Parallel circuit
Now i:i1+i2+i3
Therefore,
2 2 A 4
i=—t+—+—=—
R R, R, R

where R is the combined resistance. Hence

102

MATLAB: An Introduction with Applications

Therefore, R=

1 ~ RRyR,
Lo 1,1 RR+RR+RR
R R, Ry

2.3 KIRCHHOFF'S LAWS

Kirchhoff’s laws are the two most useful physical laws for modeling electrical systems. It is necessary to
apply Kirchhoff’s laws in solving electric circuit problems as they involve many electromotive forces such
as resistance, capacitance and inductance.

The Kirchhoff’s laws are stated as follows:

1. Kirchhoff’s current law (node law): The algebraic sum of all the currents flowing into a junction (or
node) is zero (node analysis).

In other words, the sum of currents entering a node is equal to the sum of the currents leaving the same
node. A node is an electrical circuit is a point where three or more wires are joined together. Currents going
toward a node are considered positive while currents leaving a node are treated as negative.

The algebraic sum of all currents (in) a circuit node is zero. That is,
2 (ln)in =0

Referring to Fig. 2.9, Kirchhoff’s current law states that

Fig. 2.9
Flg 2.9 (a) il +i2+i3 =0
Fig. 2.9 (b) ity =0
Flg 2.9 (C) il + iz - i3 =0

F1g29(d) il—iz—i3+i4+i5—i6:0

2. Kirchhoff’s voltage law (loop law): The algebraic sum of all the potential drops around a closed loop
(or closed circuit) is zero (loop analysis).

In other words, the sum of the voltage drops is equal to the sum of the voltage rises around a loop. That
is, the sum of all voltage drops around a circuit loop is zero. Hence

Z:Vdrop =0
or 2V gain = 0

103

Electrical Circuits

The voltage drops or voltage gains should be appropriately indicated for loop analysis. Figure 2.10 shows
examples with useful sign convention.

A A
’1 __E ’3 R
i
B B
eAB:_E CAB:—Ri
(c) (d) (e)
Fig. 2.10

The application of MATLAB to the analysis and design of control systems, engineering mechanics (statics
and dynamics), mechanical vibration analysis, electrical circuits and numerical methods is presented in this
chapter with a number of illustrative examples. The MATLAB computational approach to the transient
response analysis, steps response, impulse response, ramp response and response to the simple inputs are
presented. Plotting root loci, Bode diagrams, polar plots, Nyquist plot, Nichols plot and state space method
are obtained using MATLAB. Extensive worked examples are included with a significant number of exercise
problems to guide the student to understand and as an aid for learning about the analysis and design of
control systems, engineering mechanics, vibration analysis of mechanical systems, electrical circuits, and
numerical methods using MATLAB.

2.4 EXAMPLE PROBLEMS AND SOLUTIONS

Example E2.1: Figure E2.1 shows an electrical circuit with resistors and voltage sources. Write a MATLAB

program to determine the current in each resistor using the mesh current method based on Kirchhoff’s

voltage law.

Given: V=22V, 1,=12V, V3=44 V, R =20Q, Ry=12Q, R3=15 Q, R4=7 Q, Rs =16 Q, R¢=10 Q,
R;=10Q, Rg=15Q

104

MATLAB: An Introduction with Applications

R4

Fig. E2.1

Solution: Let iy, i, i3 and iy be the loop currents as shown in Fig. E2.1.
According to Kirchhoff’s voltage law: sum of voltage around closed circuit is zero.
Thus, the loop equations can be written by taking in each loop clockwise direction as reference.
Vi—Riii—Rs(i1—i3) — Ra(i1 —i2) = 0
—Ro(iy— i1) — Ry(ia — i3) — Ry(ia— is) — Rsia= 0
—R3(i3—i1) — Va— Re(i3— ig) — Ra(i3— 1) = 0
V3= Rgis— Ry(is— ip) — Re(is—i3) = 0

The equations can be written in matrix form as follows:

-(R +R,+R,) R, R, 0 i -V,
R, ~(R,+R,+R +R)) R, R, i 0
R, R, ~(R,+R,+R)) R, i v,
0 R, R, —(R,+R +R)| |i, -V

MATLAB solution of this system of equations is given below:

MATLAB Program

$INITIALIZING THE VARIABLES

V1i=22;

v2=12;

V3=44;

V=[-V1;0;V2;-V3] $CREATE THE VOLTAGE VECTOR
R1=20;

R2=12;

R3=15;

R4=7;

Electrical Circuits 105

R5=16;

R6=10;

R7=10;

R8=15;

% CREATE THE RESISTANCE MATRIX

R=[- (R1+R2+R3) R2 R3 0;

R2 - (R2+R4+R5+R7) R4 R7;

R3 R4 - (R3+R4+R6)R6;

0 R7 R6 — (R6+R7+R8) 1 ;

% GET THE CURRENT VECTOR AS SOLUTION
I=inv (R) *V;

% ALLOT VALUES TO FOUR CURRENTS
11=T(1)
i2=I(2)
13=I(3)
14=1I (4)

The output obtained is as follows:

V:
22
0
12
44
i =
0.8785
iy =
0.7154
iy =
0.7138
iy =
1.6655

The current in resistor Ry =i; —i, = 0.1631 A
The current in resistor Ry =i; —iz = 0.1647 A
The current in resistor Ry =i, —iz = 0.0016 A
The current in resistor Rg = iy —iz = 0.9517 A

The current in resistor Ry = iy —ip = 0.9501 A

106

MATLAB: An Introduction with Applications

Example E2.2: Write a MATLAB program that computes the voltage across each resistor and the power
dissipated in each resistor for the circuit shown in Figure E2.2 that has resistors connected in series.

R, R, R,
NNN—AN

Vs §R
4

AMNA—ANN—N

R; Rse Rs

Fig. E2.2
The voltage across each of the several resistors connected in series is given by the voltage divider rule

_
Vs Vs Vs Vi vnfR Vs

€q
where

v,, R, = the voltage across resistor n and its resistance,
R.q = XR, = the equivalent resistance,
v, = the source voltage.

nvz

s
Ry

The power dissipated in each resistor is given by P, =

Solution:
MATLAB program is given for the following data:
Vi=12 V,Ri=10Q, Ry=7Q, R3=6 Q Ry=9 Q Rs=4Q, Rg=75Q, R;=10 Q

% THIS PROGRAM CALCULATES THE VOLTAGE ACROSS EACH RESISTOR

% IN A CIRCUIT THAT HAS RESISTORS CONNECTED IN SERIES

vs=input (*Enter the source voltage’) ;

rn=input (‘Enter values of resistors as elements in a row vector\n’) ;

reg=sum(rn) ; % CALCULATING EQUIVALENT RESISTANCE
vn=rn*vs/req; % APPLY VOLTAGE DIVIDE RULE

pn=rn*vs"2/req/2; % CALCULATING POWER IN EACH CIRCUIT

i=vs/req; % CALCULATE CURRENT IN THE CIRCUIT

ptotal=vs*i; % CALCULATE POWER IN THE CIRCUIT
table=[rn’,vn’,pn’] ;% CREATE TABLE

disp (' Resistance Voltage Power’) $DISPLAY HEADINGS FOR COLUMNS
disp (' (ohms) (volts) (watts)’)

disp (table) % DISPLAY THE VARIABLE ‘TABLE’

107

Electrical Circuits

fprintf (*The curent in the circuit is %f amp’, i)
fprintf (*\nThe total power dissipated in the circuit is %f watts\n’, ptotal)

MATLAB Output:

Enter the source voltage

Enter values of resistors as elements in a row vector
[10 7 6 9 4 75 5]

Resistance Voltage Power

(ohm) (volt) (watt)
10.0000 2.4742 14.8454
7.0000 1.7320 10.3918
6.0000 1.4845 8.9072
9.0000 2.2268 13.3608
4.0000 0.9897 5.9381
7.5000 1.8557 11.1340
5.0000 1.2371 7.4227

The current in the circuit is 0.247423 amp.
The total power dissipated in the circuit is 2.969072 watt.

Example E2.3: Figure E2.3 shows a semiconductor diode and the current flowing through the diode is
given by:

v
in = folexp (qk—T”’)—l]

where v, = the voltage across the diode (volt)
ip = the leakeage current of the diode (amp)
k = Boltzmann’s constant (1.38 x10723 joule/K)
g = the charge of an electorn (1.6 x 107! coulombs)
T = temperature (in K)
ip = the current flow through the diode (amp)
(@) Write a MATLAB program to calculate the current flowing through this diode for all
voltages from —0.2 V to + 0.25 V in 0.01 V steps.
(b) Repeat the procedure in (a) for 70°F, 200°F and 400°F.

(¢) Plot the current as a function of applied voltage.

108

MATLAB: An Introduction with Applications

Fig. E2.3

Solution:

MATLAB program for calculation of current flow in diode is given below:
% INITIAL VALUES
i0=2e-4;
k=1.38e-23;
g=1.602e-19;
vd=-0.2:0.01:0.25;% diode voltage (V)
t f£=[75 200 400]; % temperature in F
for ii=l:1length(t_f)

o\

leakage current in amp

o\

Boltzmann constant (J/K)

oe

charge of electron in C

X

t k=(5/9)*(t_f(ii)-32)+273.15; $convert temperature to kelvin
id=10.* (exp ((g*vd) / (k*t_k))-1); %calculate diode current

if i1 ==1

plot (vd, id, *-o’); % plot lines in various ways
hold on;
elseif ii ==

plot (vd,id, *--");

elseif ii==
plot (vd, id, *:0');
hold off;
end
end
legend('75 deg F’,'200 deg F’, ‘400 deg F')
grid on;
title (*\bf plot of diode voltage Vs diode current’) ;
xlabel (*v_{D}’);
ylabel (*i {D}");

109

Electrical Circuits

The output is shown in Fig. E2.3(a)
Plot of diode voltage vs diode current

4 ; ;
55 —© 75degF
‘ ——— 200degF [~
~-@-- 400 deg F

3 7
2.5 /
i

Ip
N
O—

1.5 QZ
1

0 PoECOEECOEEOECOOCECO0EE00E00E Do o e _

5
-02 -015 -01 -0.05 0 0.05 0.1 0.15 0.2 0.25
Vb

Fig. E2.3(a) MATLAB output

Example E2.4: Figure E2.4(a) shows the electric field at a point due to a charge which is a vector E. The

1 5) , where ¢ is magnitude of the charge, r is the
4me,r

distance between the charge and the point, and € is the permittivity constant (8.8542 x 10712 C2/Nm?). The
electric field £ at any point is obtained by superposition of the electric field of each charge. An electric
dipole with ¢ = 12 x 107!° C is created as shown in Fig. E2.4 (b).

Write a MATLAB program to determine and plot the magnitude of the electric field along the x-axis from
x=-8cmtox=_8cm.

magnitude of £ is given by Coulomb’s law £ —(

E y A
E+
X
r /// ' >
/ (-0.03,-0.03) (0.03,-0.03)
,/ @ i @
/
/
q

110

MATLAB: An Introduction with Applications

Solution:

Electric field at any point (x, 0) along the x-axis is obtained by adding the electric field vectors due to each
of the charges. E = E_+ E, . The magnitude of the electric field is the length of the vector E. The problem
is solved by following steps:

L.
2.

5.
6.
7
8

Create a vector x for points along the x-axis.

Calculate the distance from each charge to points on x-axis according to the equations

rms = \/(0.03—x)2 +0.03> and 1ps = 1/(0.03+x)* +0.03>

Write unit vectors in the directions from each charge to the points on the x-axis as emuv = [(0.03 — x)/
rms, — 0.03/rms] and epuv = [(x + 0.03)/rps, 0.02/rps]

Calculate the magnitude of electric field due to positive and negative charges according to Coulomb’s

Lz) and £,= epmag = (

4me rms 4neyps2)

Calculate em and ep by multiplying the unit vectors by emmag and epmag.

law: E=emmag = (

Calculate E as e = em + ep,
Find the magnitude of e.

Plot e as a function of x.

MATLAB program for this is given below:
q=12e-9;
ep = 8.8542e-12;

X

=[-0.08:0.001:0.08]; %COLUMN VECTOR OF x

rms =(0.03-x)*2+0.03%2;rm = sqrt (rms) ;

rps =(0.03+x) *2+0.03%2;rp = sqrt (rps)

emuv =[((0.03-x) -/rm), (-0.03./rm)]; % Unit vector of em

epuv =[((0.03+x) - /rp), (0.03./rp)]l; % Unit vector of ep

emmag

epmag

q/ (4+xpixep)) - /rms;

=(
=(g/ (4+pi*ep)) - /rps;

em =[emmagremuv (:,1l) ,emmag*emuv(:,2)]; % Multiplication of magnitude and uv

ep

=[epmag*epuv (:,1) ,epmag*epuv(:,2)];

e = em+ep;

emag = sqrt(e(:,1) 2+e(:,2)72);

plot (x,emag, ‘k’) ;

xlabel (‘Position along the x-axis (m) ')
ylabel (‘Magnitude of electric field (N/C)")

title(‘Electric field due to an electric dipole’)

Electrical Circuits 111

The output of the program is shown in Fig. E2.4(c).

12 x 10 Electric field due to an electric dipole
T T T T T T T

11

10

Magnitude of electric field (N/C)
~

2 1 1 1 1 1 1 1
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
Position along the x-axis(m)

Fig. E2.4(c) MATLAB output

Example E2.5: Figure E2.5 shows a circuit to determine the electrical capacitance of an electrical capacitor.

B R=2000 Q

Vo c Vv

Fig. E2.5

The process involves the following steps: first the switch is connected to B and the capacitor is charged,
then the switch is switched to 4 and the capacitor discharges through the resistor. The voltage across the
capacitor is measured as the capacitor discharges. The measurements obtained are given below in a table:
(a) Write a MATLAB program to plot the voltage as a function of time, (b) determine the capacitance of the
capacitor by fitting an experimental curve to the data points.

Table E2.5

{(s) 1 2 3 4 5 6 7 8 9 10
V(volt) 95 735 | 525 | 365 | 285 | 205 | 125 | 095 | 0.75 | 061

112 MATLAB: An Introduction with Applications

Solution:
When a capacitor discharges through a resistor, the voltage of the capacitor as a function of time is given
by: V=V, exp(—t/RC), where V} is the initial voltage, R is the resistance of the resistor and C is the
capacitance of the capacitor.
By taking logarithms on both sides

In(V) = —RI—Ct + In(Vy)
This equation which has the form y = mx + ¢ can be fitted to the data points by using the MATLAB function
polyfit (x, y, 1) with ¢ as the independent variable x and In(¥) as the dependent variable y. The coefficients
m and c are determined by the polyfit function then used to determine C and V.

MATLAB Program:

r=2000; % RESISTANCE VALUE

t=1:10; % time in seconds
v=[9.57.355.253.652.852.051.250.950.750.61]; % OBSERVED VALUES of voltage
p=polyfit (t,log(v),1); one dimensional polynomial fit

c=-1/(r*p(1));
v0=exp(p(2));
tplot=0:0.1:10;
vplot=v0*exp (-tplot./ (r*c)) ;
disp(‘Capacitance’) ;c

plot (t,v, ‘o’,tplot,vplot)
xlabel (‘t(s)’)

ylabel (‘voltage’) ;

finding C
finding Vv,
choosing plotting coordinates

o° o° o° o°

MATLAB Output:
Capacitance
c=

0.0016

0 1 1 1 1 1

5
t(s)
Fig. E2.5(a) MATLAB output

6 7 8 9 10

113

Electrical Circuits

Example E2.6: A series RLC circuit driven by a sinusoidal AC voltage source (120 £0° volts) is shown in
Fig. E2.6. The impedance of the inductor is given by ZL = j2nfL, where j =+/—1, fis frequency of the voltage

source (Hz) and L is the inductance (Henries). The impedance of the capacitor is given by#j{c , where C
is the capacitance (farads). The current / flowing is given by Kirchhoff’s voltage law that is
. 120£0°

"R+ j2nfL— jI2rfC)
as function of frequency for the range 100 kHz to 10 MHz. (b) the phase angle as a function of frequency

. Write a MATLAB program to calculate and plot (a) the magnitude of the current

for the range 100 kHz to 10 MHz. (¢) the magnitude and phase angle of the current as a function of frequency
on two subplots of a single figure.

Given R =120€2, L =0.15 mH and C = 0.26 nF

Fig. E2.6

Solution:
This can be attempted as a complex number option in MATLAB.

(a) Magnitude of current:

£f=100000:50000:10000000;
$INITIALIZE RANGE OF FREQUENCY
vs=120;
c=0.265e-9;
L=0.15e-3;
r=120;
i0=vs./(r+j*2*pi*f*L-7j./ (2+«pixfxc)); $CALCULATE OUTPUT CURRENT
semilogx (f,abs (i0)) ;
%$PLOT ON LOG-LINEAR SCALE
title (*\bfPlot of magnitude of current flow vs frequency’) ;
xlabel (‘\bfFrequency (Hz) ') ;
ylabel (*\bfCurrent (A&)"');
grid on;

114

MATLAB: An Introduction with Applications

The output obtained is shown in Fig. E2.6(a).

Plot of magnitude of current flow vs frequency

0.9

I
o

o©
3

o
=)

Current (A)
o
(&)

o
~
—_—

o
w
—

\

0.2 \
0.1
10° 10° 10’
Frequency (Hz)

Fig. E2.6(a) MATLAB output

(b) Phase angle
£=100000:50000:10000000;
$INITIALIZE RANGE OF FREQUENCY
vs = 120;
c=0.265e-9;
L=0.15e-3;
r=120;
i0=vs./ (r+j*2*pi*f*L-j./ (2*pi*f*c)); $CALCULATE OUTPUT CURRENT
phase = angle(10)*180/pi;
figure (1) ;
semilogx (f,phase, ‘LineWidth’,2) ;
% PLOT ON LOG-LINEAR SCALE
title (*\bfPlot of phase of current flow Vs frequency’) ;
xlabel (*\bfFrequency (Hz) ') ;
ylabel (*\bfCurrent (Aa)’);

grid on;

115

Electrical Circuits

Plot of phase of current flow vs frequency
100

80

60

40

Current (A)
o

—40 \
-60
-80 \
o ———
-100 - . .
10 10 10

Frequency (Hz)
Fig. E2.6(b) MATLAB output

(c) Both phase angle and magnitude on single plot

£=100000:50000:10000000;
$INITIALIZE RANGE OF FREQUENCY
vs=120;
c=0.265e-9;
L=0.15e-3;
r=120;
w=2xpi+f; $CALCULATE W
i0=vs./ (r+j*2*pi*f+L-j./ (2*pixf*c)); $CALCULATE OUTPUT CURRENT
phase=angle (i0)+*180/pi;
$PHASE ANGLE IN DEGREES
figure (1) ;
subplot (2,1,1) ;
%¥SUB-PLOT-1
semilogx (f,abs (i0), ‘Linewidth’,2) ;
$MAGNITUDE
title(*\bfPlot of amplitude of current flow Vs frequency’) ;
ylabel (*\bfAmplitude (&) ') ;
grid on;
subplot (2,1,2); % SUB-PLOT-2

116 MATLAB: An Introduction with Applications

semilogx (f,phase, ‘Linewidth’,2) ;
$PHASE
title (*\bfPlot of phase of current flow vs frequency’) ;
xlabel (‘\bfFrequency (Hz)');
ylabel (‘\bfPhase (Deg)’) ;
grid on;

The output is shown in Fig. E2.6(c)

Plot of amplitude of current flow vs frequency

1
<
(0]
E
= 05
Q.
1S
< /
4//
0
10° 10° 10’
Plot of phase of current flow vs frequency
100
s N
g 50 \
a
2 0
-
o
-50
\¥
-100
10° 10° 10’

Frequency (Hz)
Fig. E2.6(c) MATLAB output

Example E2.7: The Table below gives the viscosity | of an oil at different temperatures. Write a MATLAB
program to determine an equation that can be fitted to the data.

T(°C) -20 0 20 40 60 80 100 120
=5
(N-IS(/)mz) 4.2 0.4 0.092 0.034 0.016 0.0077 0.0046 0.0033
Solution:

Usually viscosity varies with absolute temperature exponentially. To have a best fit of the given points, a
curved exponential figure is suitable, whose equations can be written as:

u=exp(al?+ bT + c)
Taking logarithms and simplifying
logu = aT?>+ bT + c.

117

Electrical Circuits

here the constants can be obtained from the polyfit function polyfit(7, logu, 2), then finally | is obtained
from the exponential relation and ploted as a function of temperature in Kelvin.

MATLAB program for this application is shown below:

TC=-20:20:120;

$TEMPERATURE RANGE IN DEGREE CENTRIGRADE

mu=[4.2 0.4 0.092 0.034 0.016 0.0077 0.0046 0.0033]; $GIVEN VISCOSITIES
TK=TC + 273; % TEMPERATURE IN KELVIN

p=polyfit (TK, log(mu),2) % POLYNOMIAL FITTING WITH LOG (MU) AND TK, SECOND ORDER
Tplot=273+[-20:120] ;% DEFINING TK AS AN ARRAY

muplot=exp (p (1) *Tplot”2+p (2) * Tplot+p (3)) ; ¥*CORRESPONDING MU ARRAY
semilogy (TK, mu, ‘o’ ,Tplot,muplot, *~’) $PLOTTING ON SEMI-LOG SCALE
xlabel (‘\bfTemperature K') ;

ylabel (*\bfViscosity in N-S/meter square’) ;

Figure E2.7 (a) shows the MATLAB output.

1

10 T T

O
[0) 0
5107 E
=}
o
(2]
g
©
E
610 |) E
zZ
£
2
‘@
8
(2] -4
S10

10_3 L L
250 300 350 400

Temperature (K)
Fig. E2.7 (a) MATLAB output

118

REFERENCES

Cogdell, J.R., Foundations of Electrical Circuits, Prentice-Hall, Englewood Cliffs, NJ, 1999.
Dorf, R.C., and Svoboda, J.A., Introduction to Electric Circuits, Wiley, New York, NY, 2006.

Fogiel, M., and Ogden, J.R., The Electric Circuits Problem Solver: A Complete Solution Guide to Any
Textbook, Research & Education Association, 1998.

Hayt, W.H., and Kemmerly, J.E., Engineering Circuit Analysis, 5" ed., McGraw-Hill, New York, NY, 1993.

Johnson, D.E., Johnson, J.R. Hilburn, J.L., and Scott, P.D., Electric Circuit Analysis, 3" ed., Wiley, New
York, 1997.

Johnson, D.E., Basic Electric Circuit Analysis, 5™ ed., Wiley, New York, 2006.

Johnson, D.E., Hilburn, J.L., Johnson, J.R., and Scott, P.D., Electric Circuit Analysis, 3" ed., Prentice-
Hall, Englewood Cliffs, NJ, 1990.

Nahvi, M., Schaums Outline of Electrical Circuits, 4™ ed., McGraw-Hill, New York, N, 2002.
Nilsson, J.W., Electrical Circuits, 7" ed., Prentice-Hall, Englewood Cliffs, NJ, 2004.
Paul, C.R., Fundamentals of Electric Circuit Analysis, Wiley, New York, 2000.

Singh Guru, B., and Warrier, R., Electric Circuits—Analysis and Design, Oxford University Press, Oxford,
2005.

Smith, R.J., and Dorf, R.C., Circuits, Systems, and Devices, 5 ed., Wiley, New York, 1992.
Starr, A.T., Electrical Circuits and Wave Filters, Pitman Publishing, New York, 1938.

MATLAB: An Introduction with Applications

PROBLEMS

P2.1: Figure P2.1 shows an electrical circuit with resistors and voltage sources. Write a MATLAB program
to determine the current in each resistor, using the mesh current method based on Kirchhoft’s second voltage
law. Given V1 =37V, 1, =19V, 13=25 VR =16 Q Ry =19 Q R3 =11 Q, Ry =10 Q, Rs =6 Q, Rg =15 Q,
R;=9Q,Rg=14Q, Ry=6 Q and Rjp =3 Q.

AN
R1
Vv
R2 R3
§R9 R1 R w()
Rs Ré
Rg
NV
Fig. P2.1

P2.2: Write a MATLAB program in a script file that computes the current through each resistor and the
power dissipated in each in a circuit that has resistors connected in parallel as shown in Fig. P2.2. Use the
script file for the circuit shown in Fig. P2.2.

Note that when several resistors are connected in a circuit in parallel, the current through each of them is given
by

119

Electrical Circuits

— VS
n Rn
where 7, and R, are the current through resistors # and its resistance, respectively, and v, is the source
voltage. The equivalent resistance, R4, is given by
1 1 1 1
—_— e —
ch Rl RZ Rn

The source current is given by: i; = v;/R

eq» and the power P, dissipated in each resistor is given by: P, = vi,,.

a G G G G a
~ ™ N < © ~
Fig. P2.2

P2.3: Figure P2.3 shows an electrical circuit with a voltage source, v, with an internal resistance, r; and a
load resistance, R;. The power P dissipated in the load is given by
__WR
(RL +]/jv)2

Write a MATLAB program to plot the power P as a function of R; for 1 <R; <12 Q
given that vy =12 V, and r, = 3 Q.

Fig. P2.3

P2.4: Figure P2.4(a) shows a resistor of R =5 Q and an inductor L = 1.4 H connected

in a circuit to a voltage source (RL circuit). When the voltage source applies a rectangular voltage pulse
with an amplitude of /"= 12V and a duration of 0.5s as shown in Fig.P2.4(b), the current i(¢) in the circuit
as a function of time is given by

|4 ke
i(t):E(l—e(KLY for 0 <1< 0.5s

%
l(t) — ef(Rt)/L E(e(O.SR)/L /1) fOr 05 S t
Write a MATLAB program to plot the current as a function of time for 0 < ¢ < 3s.

0, V(V)A

R 12

V(t) C_") L

o

o

($)]
=
zv

Fig. P2.4

120

MATLAB: An Introduction with Applications

P2.5: The ratio of the magnitude of the voltage in a low-pass RC filter shown in Fig. P2.5 is given by

w il
Vil Jl+(wRC)?

where o is the frequency of the input signal. © /V\é\/\’ 0

Write a user-defined MATLAB function that calculates the magnitude ratio.

Write a program in script file that uses the lowpass function to generate a plot Vi cC— W%

of RV as a function of ® for 102 < ® < 10° rad/s. Run the script file with

R=1300 Q, and C=9 uF. o o)
Fig. P2.5

P2.6: Figure P2.6 shows an RLC with an alternating voltage source. The source voltage v, is given by
vy = vpsin(@yt) where ®; = 2nf; in which f; is the driving frequency. The amplitude of the current, /, is
given by

[— Vm

JR +(0,L-1/(0,C))’

where R and C are the resistance of the resistor and capacitance of the capacitor, respectively. For the
circuit in the figure C =16 x 10°F, L =250 x 103 H, v,, = 25 V. Write

a MATLAB program to make R
(a) a3-D plot of I (z axis) as a function of ®, (x axis) for Vs = Vi Sin(oy t) c
60 < < 110 Hz, and a function of R (y axis) for L
I0SR<40Q
(b) aplot that is a projection on the x-z plane. Estimate from this Fig. P2.6

plot the natural frequency of the circuit. Compare the estimate

with the calculated value of 1/2n(v/LC)) .

P2.7: Figure P2.7 shows an RC circuit includes a voltage source vy, a resistor R = 50 Q and a capacitor
C =0.001 F. The differential equation that describes the response of the circuit

given by 'V\F/{V\'

dv 1, _ 1, + —

dt RC° RC" "(—) C—ve®
where v, is the voltage of the capacitor. Initially, v, = 0, and then at ¢ = 0 the
voltage source is changed. Find the response of the circuit for the following Fig. P2.7

three cases:
(@) vy=12Vfort > 0.
(b) v,=12sin (2.60m¢) V for ¢ > 0.
(¢) vy=12V for 0 <¢<0.01s, and then v; =0 for ¢t > 0.01s.
Solve each case for 0 < ¢ < 0.2s. For each case plot v, and v, vs. time using a MATLAB program.

(ONORO)

CHAPTER

CONTROL SYSTEMS

3.1 INTRODUCTION

In this chapter, we present a brief introduction and overview of control systems. Some of the terms commonly
used to describe the operation, analysis and design of control systems are presented.

3.2 CONTROL SYSTEMS

Control systems in an interdisciplinary field covering many areas of engineering and sciences. Control
systems exist in many systems of engineering, sciences and in human body. Control means to regulate,
direct, command or govern. A system is a collection, set, or arrangement of elements (subsystems). A control
system is an interconnection of components forming a system configuration that will provide a desired
system response. Hence, a control system is an arrangement of physical components connected or related
in such a manner as to command, regulate, direct or govern itself or another system.

In order to identify, delineate or define a control system, we introduce two terms: input and output here.
The input is the stimulus, excitation or command applied to a control system, and the output is the actual
response resulting from a control system. The output may or may not be equal to the specified response
implied by the input. Inputs could be physical variables or abstract ones such as reference, set point or
desired values for the output of the control system. Control systems can have more than one input or
output. The input and the output represent the desired response and the actual response respectively. A
control system provides an output or response for a given input or stimulus, as shown in Fig. 3.1.

Input: stimulus Output: response
- Control system »
Desired response Actual response

A 4

Fig. 3.1 Description of a control system

The output may not be equal to the specified response implied by the input. If the output and input are
given, it is possible to identify or define the nature of the system’s components. Broadly speaking, there
are three basic types of control systems:

122

MATLAB: An Introduction with Applications

(@) Man-made control systems
(b) Natural, including biological-control systems
(¢) Control systems whose components are both man-made and natural.

An electric switch is a man-made control system controlling the electricity-flow. The simple act of pointing
at an object with a finger requires a biological control system consisting chiefly of eyes, the arm, hand and
finger and the brain of a person, where the input is precise-direction of the object with respect to some
reference and the output is the actual pointed direction with respect to the same reference. The control
system consisting of a person driving an automobile has components, which are clearly both man-made
and biological. The driver wants to keep the automobile in the appropriate lane of the roadway. The driver
accomplishes this by constantly watching the direction of the automobile with respect to the direction of
road. Figure 3.2 is an alternate way of showing the basic entities in a general control system.

Objectives Results
> Control system

v

Fig. 3.2 Components of a control system

In the steering control of an automobile for example, the direction of two front wheels can be regarded as
the result or controlled output variable and the direction of the steering wheel as the actuating signal or
objective. The control-system in this case is composed of the steering mechanism and the dynamics of the
entire automobile. As another example, consider the idle-speed control of an automobile engine, where it is
necessary to maintain the engine idle speed at a relatively low-value (for fuel economy) regardless of the
applied engine loads (like airconditioning, power steering, etc.). Without the idle-speed control, any sudden
engine-load application would cause a drop in engine speed that might cause the engine to stall. In this
case, throttle angle and load-torque are the inputs (objectives) and the engine-speed is the output. The
engine is the controlled process of the system. A few more applications of control-systems can be found
in the print wheel control of an electronic type writer, the thermostatically controlled heater or furnace which
automatically regulates the temperature of a room or enclosure, and the sun tracking control of solar collector
dish.

Control system applications are found in robotics, space-vehicle systems, aircraft autopilots and controls,
ship and marine control systems, intercontinental missile guidance systems, automatic control systems for
hydrofoils, surface-effect ships, and high-speed rail systems including the magnetic levitation systems.

3.3 EXAMPLES OF CONTROL SYSTEMS

Control systems find numerous and widespread applications from everyday to extraordinary in science,
industry and home. Here are a few examples:

(@) Home heating and air-conditioning systems controlled by a thermostat
(b) The cruise (speed) control of an automobile
(¢) Manual control:
(i) Opening or closing of a window for regulating air temperature or air quality
(i) Activation of a light switch to regulate the illumination in a room
(¢ify Human controlling the speed of an automobile by regulating the gas supply to the engine

Control Systems 123

@
©)
@)
@©
(h)
@

0

(k)
)

(m)

Automatic traffic control (signal) system at roadway intersections

Control system which automatically turns on a room lamp at dusk, and turns it off in daylight
Automatic hot water heater

Environmental test-chamber temperature control system

An automatic positioning system for a missile launcher

An automatic speed control for a field-controlled DC motor

The attitude control system of a typical space vehicle

Automatic position-control system of a high speed automated train system

Human heart using a pacemaker

An elevator-position control system used in high-rise multilevel buildings.

3.4 CONTROL SYSTEM CONFIGURATIONS

There are two control system configurations: open-loop control system and closed-loop control system.

(@) Block: A block is a set of elements that can be grouped together, with overall characteristics described
by an input/output relationship as shown in Fig. 3.3. A block diagram is a simplified pictorial
representation of the cause and effect relationship between the input(s) and output(s) of a physical
system.

—> —
Inputs > Physical components » Outputs
within the block
—» —
Block

Fig. 3.3 Block diagram

The simplest form of the block diagram is the single block as shown in Fig. 3.3. The input and output
characteristics of entire groups of elements within the block can be described by an appropriate mathematical
expressions as shown in Fig. 3.4.

— > —»
Mathematical
— > . —»
Inputs expression Outputs
— > —»

Fig. 3.4 Block representation

(b) Transfer function: The transfer function of a system (or a block) is defined as the ratio of output to
input as shown in Fig. 3.5.

Inputs . Outputs
Transfer function

A 4
\4

Fig. 3.5 Transfer function

124 MATLAB: An Introduction with Applications
. Output
Transfer function =
Input

Transfer functions are generally used to represent a mathematical model of each block in the block diagram
representation. All the signals are transfer functions on the block diagrams. For instance, the time function
reference input is 7(¢), and its transfer function is R(s) where ¢ is time and s is the Laplace transform variable
or complex frequency.

(o) Open-loop control system: A general block diagram of open-loop system is shown in Fig. 3.6.

Disturbance Disturbance
input 1 input 2
Di(s) Da(s)
E.(s) U(s) o
Input 2 utput
Reference pu ol G.(s) Gy(s) +
Input transducer + Controlled
R(s i
(©) Controller Plant or variable
Process

Fig. 3.6 General block diagram of open-loop control system

(d) Closed-loop (feedback control) System: The general architecture of a closed-loop control system is
shown in Fig. 3.7.

Disturbance Disturbance
input 1 input 2
Di(s) D.(s)
E.(s) + +
Reference Input a + + Output
G G —>
Input " [transducer () o(®) Controlled
R(s) Summi Controller Plant or Sumrtnlng vag?s)le
umming rocess lunction
junction Forward p
path
Feedback
ath
H(s) |« P
Qutput
transducer or
sensor

Fig. 3.7 General block diagram of closed-loop control system

3.5 CONTROL SYSTEM TERMINOLOGY

The variables in Figs. 3.6 and 3.7 are defined as follows:
C(s) controlled output, transfer function of c(¥)
D(s) disturbance input, transfer function of d(¢)
E,(s) actuating error, transfer function of e (¢)
G,(s) transfer function of the actuator

Control Systems 125

G, (s) transfer function of the controller

G,(s) transfer function of the plant or process

H(s) transfer function of the sensor or output transducer = G(s)

R (s) reference input, transfer function of r(f).
Summing Point: As shown in Fig. 3.8, the block is a small circle called a summing point with the appropriate
plus or minus sign associated with the arrows entering the circle. The output is the algebraic sum of the
inputs. There is no limit on the number of inputs entering a summing point.

A
+
R T R+B R+ R-B+A
+ _
B B
(a) Two inputs (b) Two inputs (c) Three inputs

Fig. 3.8 Summing point

Take-off Point: A take-off point allows the same signal or variable as input to more than one block or
summing point, thus permitting the signal to proceed unaltered along several different paths to several
destinations as shown in Fig. 3.9.

—>A —»A
A A
—> @—rA —> @—>A
—PA Ae— \
Take-off point Take-off point

Fig. 3.9 Take-off point

Input Transducer: Input transducer converts the form of input to that used by the controller.
Controller: The controller drives a process or plant.

Plant, Process or Controlled System G,(s): The plant, process or controlled system is the system, subsystem,
process or object controlled by the feedback control system. For example, the plant can be a furnace system
where the output variable is temperature.

Controlled Output C(s): The controlled output C(s) is the output variable of the plant under the control of
the control system.

Forward Path: The forward path is the transmission path from the summing point to the controlled output.
Feedback Path: The feedback path is the transmission path from the controlled output back to the summing
point.

Feed Forward (Control) Elements: The feed forward (control) elements are the components of the forward
path that generate the control signal applied to the plant or process. The feed forward (control) elements
include controller(s), compensator(s) or equalization elements and amplifiers.

Feedback Elements: The feedback elements establish the fundamental relationship between the controlled
output C(s) and the primary feedback signal B(s). They include sensors of the controlled output,
compensators and controller elements.

126

MATLAB: An Introduction with Applications

Reference Input R(s): The reference input is an external signal applied to the control system generally at
the first summing input, so as to command a specified action of the process or plant. It typically represents
ideal or desired process or plant output response.

Primary Feedback Signal: The primary feedback signal is a function of the controlled output summed
algebraically with the reference input to establish the actuating or error signal. An open-loop system has
no primary feedback signal.

Actuating or Error Signal: The actuating or error signal is the reference input signal plus or minus the
primary feedback signal.

Positive Feedback: Position feedback implies that the summing point is an adder.
Negative Feedback: Negative feedback implies that the summing point is a subtractor.
Transducer: A transducer is a device that converts one energy form into another.

Disturbance or Noise Input: A disturbance or noise input is an undesired stimulus or input signal affecting
the value of the controlled output.

Time Response: The time response of a system subsystem, or element is the output as a function of time,
generally following the application of a prescribed input under specified operating conditions.

3.6 CONTROL SYSTEM CLASSES

Control systems are sometimes divided into two classes: (a) Servomechanisms and (b) Regulators.

(a) Servomechanisms: A servomechanism is a power-amplifying feedback control system in which the
controlled variable is a mechanical position or a time derivative of position such as velocity or
acceleration. An automatic aircraft landing system is an example of servomechanism. The aircraft follows
a ramp to the desired touchdown point. Another example is the control system of an industrial robot
in which the robot arm is forced to follow some desired path in space.

(b) Regulators: A regulator or regulating system is a feedback control system in which the reference input
or command is constant for long periods of time, generally for the entire time interval during which the
system is operational. Such an input is known as set point. An example of a regulator control system
is the human biological system that maintains the body temperature at approximately 98.6°F in an
environment that usually has a different temperature.

3.6.1 Supplementary Terminology

(a) Linear System: A linear system is a system where input/output relationships may be represented by
a linear differential equation. The plant is linear if it can be accurately described using a set of linear
differential equations. This attribute indicates that system parameters do not vary as a function of
signal level.

Similarly, the plant is a lumped-parameter (rather than distributed parameter) system if it can be described
using ordinary (rather than partial) differential equations. This condition is generally accomplished if
the physical size of the system is very small in comparison to the wavelength of the highest frequency
of interest.

(b) Time-Variant System: A time-variant is a system if the parameters vary as a function of time. Thus, a
time-variant system is a system described by a differential equation with variable coefficients. A linear
time variant system is described by linear differential equations with variable coefficients. A rocket-
burning fuel system is an example of time variant system since the rocket mass varies during the flight
as the fuel is burned.

Control Systems 127

(¢) Time-Invariant System: A time-invariant system is a system described by a differential equation with
constant coefficients. Thus, the plant is time invariant if the parameters do not change as a function
of time. A linear time invariant system is described by linear differential equations with constant
coefficients. A single degree of freedom spring mass viscous damper system is an example of a time-
invariant system provided the characteristics of all the three components do not vary with time.

(d) Multivariable Feedback System: The block diagram representing a multivariable feedback system where
the interrelationships of many controlled variables are considered is shown in Fig. 3.10.

> > Fre—p
> Controll > P
ontroller > rocess . >
—> -
Ll
Desired A A4
output response
Measurement :

Fig. 3.10 Multivariable control system

3.7 FEEDBACK SYSTEMS

Feedback is the property of a closed-loop system, which allows the output to be compared with the input
to the system such that the appropriate control action may be formed as some function of the input and
output.

For more accurate and more adaptive control, a link or feedback must be provided from output to the input
of an open-loop control system. So, the controlled signal should be fed back and compared with the reference
input, and an actuating signal proportional to the difference of input and output must be sent through the
system to correct the error. In general, feedback is said to exist in a system when a closed sequence of
cause and effect relations exists between system variables. A closed-loop idle-speed control system is shown
in Fig. 3.11. The reference input N, sets the desired idle-speed. The engine idle speed N should agree with
the reference value N, and any difference such as the load-torque T is sensed by the speed-transducer and
the error detector. The controller will operate on the difference and provide a signal to adjust the throttle
angle to correct the error.

Error lT
Nr Control —b@—b Engine >N
+ N +
Speed [«

Fig. 3.11 Closed-loop idle-speed control system

128

3.8 ANALYSIS OF FEEDBACK

The most important features, the presence of feedback impacts to a system are the following:

MATLAB: An Introduction with Applications

(a) Increased accuracy: its ability to reproduce the input accurately

() Reduced sensitivity of the ratio of output to input for variations in system characteristics and
other parameters

(¢) Reduced effects of non-linearities and distortion

(d) Increased bandwidth (bandwidth of a system that ranges frequencies (input) over which the
system will respond satisfactorily)

(e) Tendency towards oscillation or instability
(f) Reduced effects of external disturbances or noise.

A system is said to be unstable, if its output is out of control. Feedback control systems may be classified
in a number of ways, depending upon the purpose of classification. For instance, according to the method
of analysis and design, control systems are classified as linear or non-linear, time-varying or time-variant
systems. According to the types of signals used in the system, they may be: continuous data and discrete-
data system or modulated and unmodulated systems.

Consider the simple feedback configuration shown in Fig. 3.12, where R is the input signal, C is the output
signal, E is error and B is feedback signal.

The parameters G and H are constant-gains. By simple algebraic manipulations, it can be shown that the
input-output relation of the system is given by

C G

R 1+GH

The general effect of feedback is that it may increase or decrease the gain G. In practical control systems,
G and H are functions of frequency, so the magnitude of (1 + GH) is greater than 1 in one frequency range,
but less than 1 in another. Thus, feedback affects the gain G of a non-feedback system by a factor (1 + GH).

+o + lo) o > o +
R G C
_o ‘o) ¢} 7ol o

\ 4
o) o
H
o ¢}

Fig. 3.12 Feedback system

If GH = —1, the output of the system is infinite for any finite input, such a state is called unstable system-
state. Alternatively, feedback stabilizes an unstable system and the sensitivity of a gain of the overall system
M to the variation in G is defined as:

Control Systems 129

oM _ oM I M _ Percentage change in M

¢ 3GIG Percentage change in G
where dM denotes incremental change in M due to incremental change in G (dG). One can write sensitivity-
function as:
v OM/M 1
S, = =
0G/G 1+GH

By increasing GH, the magnitude of the sensitivity-function is made arbitrarily small.

3.9 CONTROL SYSTEM ANALYSIS AND DESIGN OBJECTIVES

Control systems engineering consists of analysis and design of control systems configurations. Control
systems are dynamic, in that they respond to an input by first undergoing a transient response before
attaining a steady-state response which corresponds to the input. There are three main objectives of control
systems analysis and design. They are:

1. Producing the response to a transient disturbance which is acceptable

2. Minimizing the steady-state errors: Here, the concern is about the accuracy of the steady-state
response

3. Achieving stability: Control systems must be designed to be stable. Their natural response should
decay to a zero values as time approaches infinity, or oscillate.

Analysis is investigation of the properties and performance of an existing control system. Design is the
selection and arrangement of the control system components to perform a prescribed task. The design of
control systems is accomplished in two ways: design by analysis in which the characteristics of an existing
or standard system configuration are modified, and design by synthesis in which the form of the control
system is obtained directly from its specifications.

3.10 MATLAB APPLICATION

The application of MATLAB to the analysis and design of control systems, engineering mechanics (statics
and dynamics), mechanical vibration analysis, electrical circuits and numerical methods is presented in this
chapter with a number of illustrative examples. The MATLAB computational approach to the transient
response analysis, steps response, impulse response, ramp response and response to the simple inputs are
presented. Plotting root loci, Bode diagrams, polar plots, Nyquist plot, Nichols plot and state space method
are obtained using MATLAB. Extensive worked examples are included with a significant number of exercise
problems to guide the student to understand and as an aid for learning about the analysis a nd design of
control systems, engineering mechanics, vibration analysis of mechanical systems, electrical circuits and
numerical methods using MATLAB.

3.10.1 Transient Response Analysis

When the numerator and denominator of a closed-loop transfer function are known, the commands step
(num, den), step (num, den, t) in MATLAB can be used to generate plots of unit-step responses. Here, ¢ is
the user specified time.

130

MATLAB: An Introduction with Applications

3.10.2 Response to Initial Condition
Case 1. State Space Approach
Consider a system defined in state space given by
X = Ax ..(3.1)
x (0)=x,
Assuming that there is no external input acting on the system, the response x(t) knowing the initial condition
x(0) and that x is an n-vector, is obtained as follows:
Taking Laplace transform of both sides of Eq. (3.1), we obtain

s x(s) — x(0) = AX(s) ..(32)
Equation (3.2) can be rearranged as

s x(s) = AX(s) + x(0) -(3.3)
Taking inverse Laplace transform of Eq. (3.3), we get

X = Ax +x(0) 4(9) (34
Defining z = x, Eq. (3.4) can be written as

Z =A z+x(0)4(@) ..(3.5)
Integrating Eq. (3.5), we obtain

zZ=Az+x(00)1()=Az+Bu ..(3.6)

where B =x(0) and u=1(¢)
Noting that z = x and x(¢) = z(f), we have
x=2=Az+Bu (3.7
The response to initial condition is obtained by solving Egs. (3.6) and (3.7).
The corresponding MATLAB command used to obtain the response curves are given as follows:
[x, z, t] = step (A, B, A, B);
x,=[100..0] *x';
x,=[100..0] *x';

x,=[000..1] *x';
plot (t, x5, X,,.., £, X,

Case 2: State Space Approach
Consider the system defined in state space is by
x =Ax x(0)=x, .(3.8)
y=Cx ..(3.9)
where X is an 7 vector and y is an m vector.
By defining z =x ..(3.10)

Control Systems 131

we obtain

zZ =Az+x(0) 1(t)=Az+Bu (3.11)
where

B =x(0) and u = 1(¢) ..(3.12)
Since x = 7z, Eq. (3.9) becomes

y=Cz .(3.13)
From Egs. (3.11) and (3.13), we obtain

y=C (Az+Bu)=CAz+ CBu .(3.14)

The response of the system is obtained from the Egs. (3.11) and (3.14) to a given initial condition
The following MATLAB commands may be used to obtain the response curves:
[y, z, t] =step (A, B, C*A, C*B) ;
y,=[100..0] *y’;
y,=[010..0] *y’; ..(3.15)

ym= [000..1] *y’ ;
plot (£, y1 €, y2,........ , £, ym) .

3.11 SECOND-ORDER SYSTEMS

The standard form of a second-order system is defined by
2

wrl
G(s) = T+ 20 st ol .(3.16)

where

€ is the damping ratio of the system and @, is the undamped natural frequency of the system.
The dynamic behaviour of the second order system is then described in terms of two parameters & and 1,,.
If 0<& <1, the closed loop poles are complex conjugates and lie in the left-half plane. The system is
called underdamped, and the transient response is oscillatory. If & = 0, the transient response does not die
out. If €= 1, the system is called critically damped. Overdamped system corresponds to &= 1.
Given ®, and &, then the MATLAB command

printsys (num, den)
or

printsys (num, den, s)
prints the num/den as a ratio of polynomials in s.
The unit-step response of the transfer-function system using MATLAB is obtained with the use of step-
response commands with left-hand arguments.

c =step (num, den, t)
or

[y, x, t] = step (num, den, t).

132

3.12 ROOT LOCUS PLOTS

Consider the system equation

MATLAB: An Introduction with Applications

K(s+z)(s+z)(s+2z,) _

(s+p)(s+py)-(s+p,) (3.17)
Equation (3.17) can be written as
num
1+K——=0
den ..(3.18)

where num is the numerator of the polynomial and den is the denominator polynomial, and K is the gain
(K > 0). The vector K contains all the gain values for which the closed loop poles are to be computed.

The root loci is plotted by using the MATLAB command
rlocus (num, den)
The gain vector K is supplied by the user.
The matrix » and gain vector K are obtained by the following MATLAB commands:
[r, k] = rlocus (num, den)
[r, k] = rlocus (num, den, k)
[r, k] =rlocus (A, B, C, D)
[r, k] = rlocus (A, B, C, D, K) ..(3.19)
[r, k] = rlocus (sys)
In Egs. (3.19), r has length K rows and length [den —1] columns containing the complex root locations.
For plotting the root loci, the MATLAB command plot (r, © *) is used.
The following MATLAB command are used for plotting the root loci with mark ‘0’ or x’:

r = rlocus (num, den)

plot (xr, *0’) or plot (r, ‘x’)
MATLAB provides its own set of gain values used to compute a root locus plot. It also uses the automatic
axis scaling features of the plot command.

3.13 BODE DIAGRAMS

Bode diagrams are rectangular plots. Bode diagram are also known as logarithmic plot and consist of two
graphs: the first one is a plot of the logarithmic of the magnitude of a sinusoidal transfer function, the
second one is a plot of the phase angle. Both these graphs are plotted against the frequency on a logarithmic
scale.
The MATLAB command “bode” obtains the magnitudes and phase angles of the frequency response of
continuous time, linear, time invariant systems.
The MATLAB bode commands commonly used are:

Bode (num, den)

bode (num, den, w)

bode (A, B, C, D) ..(3.20)

bode (A, B, C, D, w)

bode (sys)

Control Systems 133

where w is the frequency vector.
MATLAB bode commands with left hand arguments commonly used are:

[mag, phase, w] = bode (num, den)

[mag, phase, w] = bode (num, den, w)

[mag, phase, w] = bode (A, B, C, D)

[mag, phase, w] = bode (A, B, C, D, w) (321

[mag, phase, w] =bode (A, B, C, D, iu, w)

[mag, phase, w] = bode (sys)

The MATLAB commands given in Eq. (3.21) returns the frequency response of the system in matrices mag,
phase and w. The plot is not drawn on the screen. The matrices mag, phase provide the magnitudes and
phase angles of frequency response of the system, computed at the specified frequency points.

The magnitude may be converted into decibels using the MATLAB statement

magdB = 20 * log 10 (mag) ..(3.22)
In MATLAB, the following command

logspace (d1l, d2) ..(3.23)
or

logspace(dl, d2, n). logspace (dl, d2) ..(3.24)

are used to specify the frequency range that will generate a vector of 50 points logarithmically equally
speed between decades 104! and 1092,

The MATLAB command

w = logspace (-1, 2) ..(3.25)
may be used to generate 50 points between 0.1 and 100 rad/sec.
Similarly, the MATLAB command

logspace (d1l, d2, n) ..(3.26)

generates n points logarthimatically equally spaced between 104! and 109 where by the n points include
both the endpoints.

3.14 NYQUIST PLOTS

Nyquist plots are also used in the frequency-response representation of linear, time invariant, continuous
time feedback control systems. Nyquist plots are polar plots.

The MATLAB command

nyquist (num, den) -..(3.27)
Draw the Nyquist plot of the transfer function
num(s)
G(s)=
(s) den(s) .(3.28)

where num and den contain the polynomial coefficients in descending powers of s. The other MATLAB
command uses for drawing Nyquist plots are:

134

MATLAB: An Introduction with Applications

nyquist (
nyquist (B
nyquist (A, B, C, D, w)
nyquist (A, B, C, D, iu, w) ..(3.29)
nyquist (
where w is the frequency vector.
The MATLAB command involving the user-specified vector w in Eq. (3.29) computes the frequency response
at the specified frequency points.
The following MATLAB commands
[re, im,w] = nyquist (num, den)
[re, im,w] = nyquist (num, den, w)
[re, im,w] = nyquist
[re, im,w] =nyquist (A, B, C, D, w) ..(3.30)
[re, im,w] = nyquist
[re, im,w] = nyquist (sys)
are used to obtain the frequency response of the system in the matrices re, im and w. The plot is not drawn
on the screen. The matrices re and im contain the real and imaginary parts of the frequency response of the
system, computed at the frequency points specificated in the vector w.

3.15 NICHOLS CHART

The chart consisting of the M and N loci in the log magnitude versus phase diagram is called the Nichols
chart. The G(jw) locus drawn on the Nichols chart gives both the gain characteristics and phase
characteristics of the closed loop transfer function at the same time. The Nichols chart contains curves of
constant closed loop magnitude and phase angle. The Nichols chart is symmetric about the 180° axis. The
M loci are centered about the critical point (0 dB, —180). The Nichols chart is useful in determining the
frequency response of the closed loop from that of the open loop. The Nichols chart is produced by using
the MATLAB command nichols(num, den). The command # grid creates the dotted lines that allow reading
closed-loop gain and phase from the Nichols chart. In order to customize the axes of the Nichols chart, the
MATLAB command axis is used.

3.16 GAIN MARGIN, PHASE MARGIN, PHASE CROSSOVER

FREQUENCY AND GAIN CROSSOVER FREQUENCY

The MATLAB command

[Gm, pm, wcp, wcg] = margin (sys) ..(3.31)
can be used to obtain the gain margin, phase margin, phase crossover frequency and gain crossover
frequency.
In Equation (3.31), Gm is the gain margin, pm is the phase margin, wcp is the phase crossover frequency,
and wcg is the gain crossover frequency.

Control Systems 135

The following MATLAB command is commonly used for obtaining the resonant peak and resonant
frequency:
[mag, phase, w] = bode (num, den, w)
or
[mag, phase, w] = bode (sys, w)
[Mp, k] = max (mag) ..(3.32)
resonant peak = 20 * 1og 10 (Mp)
resonant frequency =w (k)
The following lines are used in MATLAB program to obtain bandwidth:
n=1
while 20 * log 10 (mag (n)) > -3
n=n+1
end ..(3.33)
bandwidth = w (n)

3.17 TRANSFORMATION OF SYSTEM MODELS

In this section, we consider two cases of transformation of system models:
1. Transformation of system model from transfer function to state space
2. Transformation of system model from state space to transfer function

3.17.1 Transformation of System Model from Transfer Function to State Space
The closed-loops transfer function can be written as

Y(s) _ numeratorof polynomialins _ num

U(s) * denominator of polynomialins den ~(3.34)
The state space representation is obtained by the MATLAB command
[A, B, C, D] =tf 2ss (num, den) .(3.35)

3.17.2 Transformation of System Model from State Space to Transfer Function
The transfer function from state space equations is obtained by using
the MATLAB command:

[num, den] = ss2tf (A, B, C, D, iu) (3.36)
where iu corresponds to the system with more than one input. iu is either 1, 2 or 3, where 1 implies input
uy, 2 implies input u, and 3 implies input u;

For system with only one input, the MATLAB command

[num, den] = ss2tf (A, B, C, D) -..(3.37)
or

[num, den] = ss2tf (A, B, C, D, 1) ..(3.38)
may be used

136

MATLAB: An Introduction with Applications

3.18 BODE DIAGRAMS OF SYSTEMS DEFINED IN STATE SPACE

Let the control system defined in state space be

X=Ax + Bu
y =Cx + Du .(3.39)
where

A = state matrix (nxn matrix)

B = control matrix (nxr matrix)
C = output matrix (mxn matrix)
D = output matrix (mxn matrix)
u = control vector (r — vector)
x = state vector (n — vector)

y = output vector (m — vector)

The MATLAB command bode[A, B, C, D] may be used to obtain the Bode diagram of this system. In fact,

the command bode[A, B, C, D] gives a series of Bode plots, one for each input of the system, with the
frequency range automatically determined.

If we use the scalar iu as an index into the inputs of the control system that specifies which input is to be
used for the Bode plot, then the MATLAB command Bode[A, B, C, D iu] produces the Bode plots from the
input iu to all the outputs (y;, »,,, ,,) of the system with the frequency range automatically determined.
U
If the system has three inputs, then u = |4,
Uy
For a system with only one input u«, then the MATLAB command
Bode[A, B, C, D] .(3.40)
or
Bode [A, B, C, D, 1] can be used. ..(341)

3.19 NYQUIST PLOTS OF A SYSTEM DEFINED IN STATE SPACE

Consider the system defined in state space given by Equation (3.39). Nyquist plots of the system defined
in Eq. (3.39) may be obtained by using the MATLAB command

nyquist (A, B, C, D) «(3.42)
The MATLAB command given by Eq. (3.42) produces a series of Nyquist plots one corresponding to each
input and output combination of the system, with the frequency range automatically determined.
If we used the scalar iu as an index to the inputs of the control system that specifies which input is to be
used for the Nyquist plot, then the MATLAB command nyquist (&, B, C, D, iu, w) produces Nyquist plots

from the input to all the outputs (v, ys,, ¥,,) of the system with the frequency range automatically
determined.

Control Systems 137

The MATLAB command

nyquist (A, B, C, D, iu, w) ..(3.43)
considers the user-supplied frequency vector w. The vector w specifies the frequency at which the frequency
response should be determined.

3.20 TRANSIENT-RESPONSE ANALYSIS IN STATE SPACE

In this section, we present the transient-response analysis of systems in state space using MATLAB.
Specifically, we present the step response, impulse, ramp response and responses to other forms of simple
inputs.

3.20.1 Unit Step Response
For a control system defined in a state space form as in Eq. (3.39), the MATLAB command

step (A, B, C, D) ..(3.44)
will generate plots of unit step responses, with the time vector automatically determined provided ¢ is not
explicitly provided in the step commands.

The MATLAB command step (sys) may also be used to obtain the unit-step response of a system.

The command

step (sys) ..(3.45)
can be used where the system is defined by

sys = tf (num, den) ..(3.46)
or

sys =ss (A, B, C, D) ..(3.47)

The following MATLAB step commands with left hand arguments are used then no plot is shown on the
screen:

[y, x, t] = step [num, den, t]

[y, x, t] = step (A, B, C, D, iu) ..(348)

[y, x, t] =step (A, B, C, D, iu, t)
Hence, in order to obtain the response curves, plot commands should be used. The matrices x and y contain
the state response of the system and the output respectively, computed at the time points ¢. In Eq. (3.48),
iu is a scalar index of the inputs of the system, which specifies the input to be used for the response, and
t is the user specified time. The step command in Eq. (3.48) can be used to obtain a series of step response
plots, one for each input and output combination of

X = Ax + Bu
y=Cx+Du .(3.49)
when the system involves multiple inputs and multiple outputs.

3.20.2 Impulse Response

The following MATLAB commands may be used to obtain the unit impulse response of a control system:
impulse (num, den) ..(3.50)
impulse (A, B, C, D) ..(3.51)

138

MATLAB: An Introduction with Applications

[y, x, t] = impulse (num, den) ..(3.52)
[y, x, t] = impulse (num, den, t) ...(3.53)
[y, x, t] = impulse (A, B, C, D) ..(3.54)
[y, x, t] = impulse (A, B, C, D, iu) ..(3.55)
[y, x, t] = impulse (A, B, C, D, iu, t) ..(3.56)

The command in Eq. (3.50) impulse (num, den) shows the plots of the unit impulse response on the monitor
(screen). The command in Eq. (3.51), impulse (4, B, C, D) produces a series of unit impulse-response plots
one for each input and output combination of the system defined in Eq. (3.39) with the time vector
automatically obtained. The vector # in Egs. (3.53) and (3.56) is the user supplied time vector, which specifies
the times at which the impulse response is to be obtained. The scalar iu in Egs. (3.55) and (3.56) is an index
into the inputs of the system and specifies which input is to be used for the impulse response. The matrices
x and y in Egs. (3.52) to (3.56) contain the state responses of the system and the output respectively, evaluated
at the time points ¢.

3.20.3 Unit Ramp Response
Consider the system described in state space as

X = Ax + Bu

y=Cx+Du ..(3.57)
where u is the unit ramp function.

When all the initial conditions are zeros, the unit ramp response is the integral of the unit step response.
Therefore, the unit ramp response is given by

‘
7= Iydt .(3.58)
or 0
Z=y=Xx4 .(3.59)
Defining
Z=1X; ..(3.60)
Equation (3.59) can be written as
X3 =X .(3.61)
Combining Egs. (3.57) and (3.61), we can write
X = AAx + BBu
z=CCx + DDu .(3.62)
The MATLAB command
[z, x, t] = step (AA, BB, CC, DD) ..(3.63)

can be used to obtain the unit-ramp response curve z (7).

3.20.4 Response to Arbitrary Input

The response to an arbitrary input can be obtained by using the following MATLAB commands:
lsim (num, den, t) ..(3.64)
lsim (A, B, C, D, u, t) .(3.65)

Control Systems 139
y = 1lsim (num, den, r, t) ...(3.66)
y=1sim (A, B, C, D, u, t) ..(3.67)

The MATLAB commands in Egs. (3.64) to (3.67) will generate the response to input time function r or u

3.21 RESPONSE TO INITIAL CONDITION IN STATE SPACE

Consider the system defined in state space by

X = Ax + Bu, x (0) =x, ..(3.68)
y=Cx+ Du ..(3.69)
The MATLAB command
initial (A, B, C, D, [initial condition], t) ..(3.70)

may be used to provide the response to the initial condition.

3.22 EXAMPLE PROBLEMS AND SOLUTIONS

Example E3.1: Reduce the system shown in Fig. E3.1 to a single transfer function, 7(s) = C(s)/R(s) using
MATLAB. The transfer functions are given as

1
GO = G5+7)
GO (P r6s45)
1
Gi(9) = (548)
Gy(9) = —
7
Gs) = (5+3)
G =
o (s +7s+5)
R
= (543
1
Gy(s) =

(s+9)

140

MATLAB: An Introduction with Applications

R(s)

+

!

The transfer functions are given as:

Solution:

Gl (s) = (s +7)

G2 (s) = 1/(s* + 65 + 5)
G3 (s) = 1/(s + 8)

G4 (s) = s

G5 (s) = T/(s + 3)

G6 (s)= 1/(s> + 7s + 5)
G7 (s) = 5/(s + 5)

G8 (s) = 1/(s + 9)

% MATLAB Program

Gl
G2
G3
G4
G5
G6
G7
G8

o J 0 U1 B W N

tf ([001], [017]);
tf ([00 1], [165]);
tf ([00 1], [018]);
tf ([00 1], [0101);
tf ([00 7], [013]);
tf ([0 011, [175]);
tf ([0 051, [015]);
tf ([0 011, [019]);
tf ([0 0 1], [001]);
append (G1, G2, G3, G4, G5, G6, G7, G8, G9);
1-2-509]

18

18

18

34 -6

700

34 -6

7 0 0];

Control Systems 141

Inputs = 9;

Outputs = 7;

Ts = connect (T1l, Q, Inputs, Outputs) ;
T = Tf (Ts) computer response
Transfer function:

10 877 + 290 876 + 3350 8”5 + 1.98e004 s™4 + 6.369e004 ™3 + 1.089e005 8”2
+ 8.895e€004 s + 2.7€004 8”10 + 45 ™9 + 866 8”8 + 9305 ™7 + 6.116e004 576 +
2.533e005 8”5 + 6.57e005 ™4 + 1.027e006 "3 + 8.909e005 s™2 + 3.626e005 s
+ 4.2e004

Example E3.2: For each of the second order systems below, find &, ®,, 75, Tp, Tr, % overshoot and plot the
step response using MATLAB.

130

@ T8 = 554130

0.045
®) 1) = G5 0255+ 0,045
10°

© = G 325%10°5 +10°
Solution:
(a) >>clf

>> numa=130;

>> dena=[1 15 130] ;

>> Ta=tf (numa, dena)

Transfer function:
130

s"2 + 15s + 130
>> omegana=sqrt (dena(3))

omegana = 11.4018

>> zetaa=dena (2) / (2*omegana)
zetaa = 0.6578

>> Tsa=4/ (zetaa*omegana)
Tsa = 0.5333

>> Tpa=pi/ (omegana*sgrt (1-zetaa”2))
Tpa = 0.3658

>> Tra=(1.76*zetaa”3-.417*zetaa”™2 + 1.039+zetaa + 1)/ omegana
Tra = 0.1758

>> percenta=exp (-zetaa*pi/ sqrt (l-zetaa”™2)) *100
percenta = 6.4335

>> subplot (221)

142

MATLAB: An Introduction with Applications

>> step (Ta)
>> title (' (a)’)

>> ' (b)’

ans =
(b)

>> numb=. 045;

>> denb=[1 .025 .045];

>> Tb=tf (numb, denb)

Transfer function:

0.045

52 + 0.025s + 0.045

>> omeganb=sqgrt (denb (3))
omeganb=0.2121

>> zetab=denb (2) / (2*omeganb)
zetab=0.0589

>> Tsb=4/ (zetabxomeganb)
Tsb = 320

>> Tpb=pi/ (omeganb*sqgrt (1-zetab™2))
Tpb = 14.8354

>> Trb=(1.76*zetab”3 -.417+zetab™2 + 1.039xzetab + 1) / omeganb
Trb =4.9975

>> percentb=exp (-zetab*pi/ sgrt (1-zetab™2)) *100
percentb = 83.0737

>> subplot (222)

>> step (Th)

>> title (* (b))

>> ‘(c)’
ans =

(©)

>> numc=10E8;
>> denc=[1 1.325*10E3 10E8] ;
>> Tc=tf (numc, denc)
Transfer function:
1e009
s"2 + 13250s + 1e009

Control Systems 143

>> omeganc=sqrt (denc(3))
omeganc = 3.1623e+004

>> zetac=denc (2)/ (2*omeganc)
zetac = 0.2095

>> Tsc = 4/ (zetac*omeganc)

Tsc = 6.0377e-004

pi/ (omeganc*sqgrt (l-zetac”™2))

1.0160e-004

>> Trc = (1.76*zetac”™3 —.417*zetac™2 + 1.039*zetac + 1)/ omeganc

3.8439%e-005

>> percentc =exp (-zetac*pi/ sqgrt (l-zetac™2))*100

>> Tpc

Tpc

Trc

percentc = 51.0123
>> subplot (223)
>> step (Tc)
>> title (' (c) ')
Step Response

Step Response Step Response

15 2.0 2.0
1.5 1.5
g ¢ g [\
2 2 1 A\J'\“‘\\'AI_A 2 1 /\\/
a a a
gos g I e IV
0.5 0.5
0 . . . 0 . . . 0 . . .
0O 02 04 06 08 0 100 200 300 400 0 2 4 6 8
Time (sec) Time (sec) Time (sec)

x 10*
Fig. E3.2
Example E3.3: Determine the pole locations for the system shown below using MATLAB.

C(s) _ s =65 +7s+15
R(s) s +s5' =55 —9s> +11s—12

Solution:

>>9%MATLAB Program

>>den= [11-5-911 -12];

>> A=roots (den)

A=
-2.1586 + 1.23961
-2.1586 1.23961

2.3339

0.4917 + 0.76691
0.4917 - 0.76691

144 MATLAB: An Introduction with Applications

Example E3.4: Determine the pole locations for the unity feedback system shown below using MATLAB.
150

G(s) =
(s+5(s+7(s+9)(s+1D

Solution:

>> %MATLAB Program

>> numg =150
numg = 150

>> deng =poly ([-5 -7 -9 -111);

>> ‘G(s)’
ans =
G(s)

>> G=tf (numg, deng)
Transfer function:
150
s"4 + 32 g"3+ 374 g"2 + 1888 s + 3465

>> ‘Poles of G(s)’
ans =
Poles of G(s)

>> pole (G)

ans =
-11.0000
-9.0000
-7.0000
-5.0000
>> ‘T(s)’
ans =
T (s)

>> T=feedback (G, 1)
Transfer function:
150
s"4 + 32 g3+ 374 "2+ 1888 s + 3615

>> pole (T)
ans =
-10.9673+1.95061
-10.9673-1.95061
-5.0327+1.95061
-5.0327-1.95061

Control Systems 145

Example E3.5: A plant to be controlled is described by a transfer function

s+7

s +9s5+30
Obtain the root locus plot using MATLAB.
Solution:

>>%MATLAB Program

>> clf

>>num = [1 7];

>>den = [1 9 30];

>> rlocus (num, den) ;

G(s)=

Computer response is shown in Fig. E3.5.
Root Locus

4 T T T T

3F

Imaginary Axis
o

-3t i

—4 I L I I I 1 I I
-20 -18 -16 -14 -12 -10 -8 -6 4 -2 0
Real Axis

Fig. E3.5

Example E3.6: For the unity feedback system shown in Fig. E3.6, G(s) is given as

R(s)

G(s) >

Fig. E3.6

30(s? =55 +3)

G(s)=
(5+D)(s+2)(s+4)(s+5)

Determine the closed-loop step response using MATLAB.

146 MATLAB: An Introduction with Applications

Solution:

>>9%MATLAB Program

>>numg=40*[1 -5 7] ;

>> deng =poly ([-1 -2 -4 -5]);

>> G=tf (numg, deng) ;

>> T=feedback (G, 1)
Transfer function:

40s"2 - 200s + 280
s + 128”3 + 895”2 - 122s + 320

>> step (T)
Computer response:

Figure E3.6 (a) shows the response.
8 Step Response

TF 4

Amplitude

1 1 1 1
0 0.5 1 1.5 2 25 3 35
Time (sec)

Fig. E3.6(a)

Simulation shows over 30% overshoot and non minimum-phase behaviour. Hence, the second-order

approximation is not valid.

Example E3.7: Determine the accuracy of the second-order approximation using MATLAB to simulate the
unity feedback system shown in Fig. E3.7 where
B 12(s* +35+9)

(s> +3s+9)(s+1)(s+5)

G(s)

Control Systems 147

R(s)

G(s) ce),

Fig. E3.7

Solution:
>>%MATLABProgram
>>numg=12*[1 3 9] ;
>> deng =conv ([1 3 9], poly ([-1-51));
>> G=tf (numg, deng) ;
>> T=feedback (G, 1);
>> step (T)

Computer response [see Fig. E3.7 (a)].

Step Response
0.8 T T T

0.7F 3

0.6 .

Amplitude
o o
a~)
1 1

o
w
T
1

o
N
T
1

0 1 1 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14 16 18 2

Time (sec)
Fig. E3.7 (a)

Example E3.8: For the unity feedback system shown in Fig. E3.8 with

G(s)= K(s+1)
T s+ D)(s+5)(s5+6)

determine the range of K for stability using MATLAB.

R(s) G(s)

v

Fig. E3.8

148

MATLAB: An Introduction with Applications

Solution:

>>9%MATLAB Program

>> K= [0:0.2:200];

>> for i =1: length (X);

>> deng=poly ([0 -1 -5 -6]) ;
>> dent=deng+ [0 0 0 K (i) K (1)1;
>> R=roots (dent) ;

>> A=real (R) ;

>> B=max (A) ;

>> 1f B>0

>> R

>> K=K (1)

>> break

>> end

>> end

Computer response:
R=
—-10.0000
—0.5000 + 4.4441i
—0.5000 — 4.4441i
—-1.0000
A=
—-10.0000
—0.5000
—0.5000
—-1.0000

—0.5000

Example E3.9: Write a program in MATLAB to obtain the Nyquist and Nichols plots for the following
transfer function for k=30.
k(s+1D)(s+3+7)(s+3-=7i)

G(s)= ; ;
(s+D(s+3)(s+5)(s+3+7i)s+3-7i)

Solution:
>>%MATLAB Program
>>9%Simple Nyquistand Nichols plots
>>clf
>> z= [-1 =3+7*1 -3-7*1i];
>>p= [-1 -3 -5 -3+7*1 -3-7*i];
>> k=30;
>> [num, den] =zp2tf (z’, p’, k);

Control Systems

149

>> subplot (211), nyquist (num, den)
>> subplot (212), Nichols (num, den)
>> ngrid
>> axis ([50 360 -40 30])

Computer response:

The Nyquist and Nichols plots are shown in Fig. E3.9.

) Figure No. 1
Ele Edt Yiew Insert Tools ‘Window Help

-10|x|

IDSEE NA2/ | PED

Nyquist Diagram

Imaginary Aixs

Real Axis

Nichols Chart

40 T T T T
__________________ _
TTTTes e, f) S P
h
T 25 7H 0de
25dHT -
& | ot R et et s Tl AL i
...... SEEE e]
AT S e W 1 - Tt ST e
\:r -\-\--:\--:,--.-_ o= "-'\.__‘ - L. --._'_-_,__c-_---"-'x'ﬂ"F ------- mmpom=TT
= - - - - -
(U] [e = ek e T =
0) SR i PRt P
) Rt o T = i L s)
bl R S "
= e 2 e TS AAE s T el o
c 3 .
Q20 f-umunnan b Wi b
o : ; v 5
‘ ! Y %
1 ! 1 1
I i ‘ I i
-40 i | | al

I l
-270 -225 -180 -135
Open-Loop Phase (deg.)

Fig. E3.9

150 MATLAB: An Introduction with Applications

Example E3.10: A PID controller is given by

2
G.(s)= 99,1258 +0-57"
A

Draw a Bode diagram of the controller using MATLAB.

Solution:
29.125(s% +1.14s +0.3249)
S

_ 20 1255% +33.20255 +9.4627
s

G.(s)=

The following MATLAB program produces the Bode diagram
>> 9% MATLAB Program
>> % Bode diagram
>> num= [29.125 33.2025 9.4627];
>> den= [0 1 0] ;
>> bode (num, den)
>> title (‘Bode diagram of G(s) ')

<) Figure No. 1

File Edit Wiew Insert Tools Window Help

=10]

InsEa@/ xA /s @20

Bode Diagram

w B » a
a o [¢)] o

Magnitude (dB)

w
o

Phase (deg)
o &~ ©
[} o

5

-90

10” 10’
Frequency (rad/sec)

Fig. E3.10 Bode diagram of G(s)

10

Control Systems

151

Example E3.11: For the closed-loop system defined by

Cs) 1
R(s) e 20s+1

(a) plot the unit-step response curves c(¢) for & =0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0. u,, is normalized to 1.

(b) plot a three-dimensional plot of (a).

Solution:

>> % Two-dimensional plot and three-dimensional plot of unit-step

>> $response curves for the standard second-order system with wn =1

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

%and zeta =0, 0.1, 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0
t=0:0.2:10;

zeta= [00.10.20.40.50.60.81.0];

for n=1:8;

num= [0 0 1];

den= [1 2*zeta (n) 1];

[y (1:51, n), x, t] = step (num, den, t);
end

$Two-dimensional diagram with the command plot (t, vy)
plot (t, vy)

grid

title (‘Plot of unit-step response curves’)
xlabel ('t Sec’)

ylabel (‘Response’)

text (4.1, 1.86, ‘\zeta=0")

text (3.0, 1.7,'0.1")

text (3.0, 1.5,'0.2")

text (3.0, 1.22,'0.4")

text (2.9, 1.1,'0.5")

text (4.0, 1.08,'0.6")

text (3.0, 0.9, *0.8")

text (4.0, 0.9,'1.0")

$For three-dimensional plot, we use the command mesh (t, eta, y’)

mesh (t, eta, y')

title (*Three-dimensional plot of unit-step response curves’)

xlabel ('t Sec’)
ylabel (‘\zeta’)
zlabel (‘Response’)

152 ——— MATLAB: An Introduction with Applications

) figwero1 =1oix

File Edit Yiew Insert Tools ‘Wwindow Help
Deda "A 2/ | @R

Plot of unit-step response curves

- 1 A~ 1 1 1 I
: : : =g : : : .
i e S R S ey t; """" e s
R R
L s b iy i bt S e e
I S ¥ S P A . A
@ hid : o EE* ' : i :
g) o . .]
o / """"" ; S
3 /i |
& agl--..-- 0 TR R Lo H N it ieb e £ e =
W :
M- -----+ el A S B iy s e -
(7.0 I/ A - S— P R - k- L L I— L
D_z_ e TR ST X R N, W 5 7 PR, ol N PR Ty | T T | TR W TR —]
0 i i i i i i i i
] 1 2 3 4 L5 B 7 g E 10
t Sec

Fig. E3.11 (a) Plot of unit-step response curves

=l x

File Edit ‘Wiew Insert Tools ‘window Help
Desda y"A 2/ @ppo

Three-dimensional plot of unit-step response curves

Response

t Sec

Fig. E3.11 (b) Three-dimensional plot of unit-step response curves

153

Control Systems

Example E3.12: A closed-loop control system is defined by
C(s) 20s
R(s) s>+ 20s+1
where e is the damping ratio. For & = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 using MATLAB. Plot.

(@) atwo-dimensional diagram of unit-impulse response curves

(b) a three-dimensional plot of the response curves.

Solution: A MATLAB program that produces a two-dimensional diagram of unit-impulse response curves
and a three-dimensional plot of the response curves is given below:

>> % To plot a two-dimensional diagram

>>t =0:0.2:10;

>> zeta=[0.10.20.30.40.50.60.70.80.91.0];
>> for n=1:10;

>>num = [0 2xzeta (n) 1];

>> den = [1 2*zeta (n) 1];

>> [y (1:51, n), x, tl=impulse (num,den,t);

>> end

>> plot (t, vy)

>> grid

>> title (‘Plot of unit-impulse response curves’)
>> xlabel ('t Sec’)

>> ylabel (‘Response’)

>> text (2.0,0.85,'0.1")

>> text (1.5,0.75,'0.2")
>> text (1.5,0.6,'0.3")
>> text (1.5,0.5,'0.4")
>> text (1.5,0.38,'0.5")
>> text (1.5,0.25,'0.6")
>> text (1.7,0.12,'0.7")
>> text (2.0,-0.1, *0.8")
>> text (1.5, 0.0, *0.9")
>> text (.5, 1.5,’1.0")

>> % Three—dimensional plot

>> mesh (t, eta, ‘y’)

>> title (‘Three-dimensional plot’)
>> xlabel ('t Sec’)

>> ylabel (‘\zeta’)

>> zlabel (‘Response’)

154

MATLAB: An Introduction with Applications

The two-dimensional diagram and three-dimensional diagram produced by this MATLAB program are shown
in Figs. E3.12 (a) and (b) respectively.

-l

File Edit WView Insert Tools Window Help

osda "A 2 @0

Plot of unit-impulse response curves

Response

t Sec

Fig. E3.12 (a) Two-dimensional plot

e

bile bdt ¥ew Insert Jools window Help
IDegae xar/ |2po
Three-dimensional plot

Fig. E3.12 (b) Three-dimensional plot

Control Systems 155

Example E3.13: For the system shown in Fig. E3.13, write a program in MATLAB that will use an open-
loop transfer function G(s):

Gy S06+D
s(s+3)(s+5)

G(s) = 25(s+D)(s+7)
s(s+2)(s+4)(s+8)

(@) Obtain a Bode plot
(b) Estimate the percent overshoot, settling time and peak time
(¢) Obtain the closed-loop step response.

Solution:
(@) >>%MATLAB Program

>> G=zpk ([-1], [0 -3 -5], 50)
>> G=tf (G)

>> bode (G)

>> title (‘'System 1’)

>> %title (‘System 1')

>> pause

>> $Find phase margin

>> [Gm, Pm, Wcg, Wcp] =margin (G) ;
>> w=1:.01:20;

>> [M, P, w] =bode (G, w);

>> % Find bandwidth

>> for k=1:1: length (M) ;

>> if 20*1ogl0 (M (k)) +7<=0;

>> ‘Mag’

>> 20*%1logl0 (M (k))

>> ‘BW’

>> wBW =w (k)

>> break

>> end

>> end

>> $Find damping ratio, percent overshoot, settling time and peak time
>> for z=0:.01:10

>> Pt=atan (2*z/ (sqrt (-2*z”"2+sqgrt (1+4*z%4))))*(180/pi);
>> if (Pm-Pt) <=0
>> Z;

>> Po=exp (-z*pi/sqrt (1-z"2));

>> Ts= (4/ (WBW*z)) *sqgrt ((1-2*z"2) +sqrt (4*z"4-4*z"2+2));

>> Tp = (pi/ (WBW*sqgrt (1-z*2)))*sgrt ((1-2*z"2) +sqrt (4*z*4-4*z"242));
>> fprintf (*Bandwidth=%g’, wBW)

>> fprintf (*Phase margin=%g’, Pm)

156

MATLAB: An Introduction with Applications

>> fprintf

>> fprintf

‘', Damping ratio=%g’, z)

', Settling time=%g’, Ts)

(

>> fprintf (', Percent overshoot=%g’, Po*100)
(
(

>> fprintf
>> break
>> end

>> end

>> T=feedback (G, 1);

>> step (T)

‘', Peak time=%g’,

Tp)

>> title ('Step response system 1’)
>> $title (‘Step response system 1)

Computer response:
Zero/pole/gain:

50(s+1)
s(s+3)(s+5)

Transfer function:

505+50

s"3+85"2+15s

The Bode plot is shown in Fig. E3.13 (a)

«) Figure No. 1

File Edit Yiew Insert Tools ‘window Help

=0l

Ins@a/xa s @en

Magnitude (dB)

Phase (deg)

Bode Diagram

—45

|
©
(=)

-135

-180

10~

10° 10’

Frequency (rad/sec)

Fig. E3.13 (a)

157

Control Systems

ans =

ans =
—-3.0032

ans =

BW

wBW =
9.7900

Bandwidth = 9.79, Phase margin = 53.892, Damping ratio = 0.59, Percent overshoot = 10.0693, Settling

time = 0.804303, Peak time = 0.461606

The step response is shown in Fig. E3.13(b)

i

Eile Edit Wiew Insert Tools ‘Window Help

Ins@a/rars 2o

Step Response
14 e STOPINCSPONS

=
@

=
)

Amplitude

°
i

0.2

% 05 1 15 2 25 3 35 4 45 5

Time (sec)

Fig. E3.13 (b)

(b) Likewise, for this problem
>> G = zpk ([-1 -7], [0 -2 —4 8], 25)
>> G =tf (G)
The following Bode plot and step response are obtained [see Figs. E3.13(c) and (d)].
Zero/pole/gain:
25(s+1)(s+7)
s(s+2)(s+4)(s+8)

158 MATLAB: An Introduction with Applications

Transfer function:
255"2+200s+175
s 4+14s"3+565" 2+ 64s
-l x]

Eile Edit Yiew Insert Tools ‘Window Help

lDszma A s 2o

Bode Diagram

Magnitude (dB)

Phase (deg)

-135

10_1 . 100 . 101 . 102
Frequency (rad/sec)

Fig. E3.13(c)

ans =

ans =
-7.0110

ans =

BW

wBW =
6.5500

Bandwidth = 6.55, Phase margin = 63.1105, Damping ratio = 0.67, Per cent overshoot = 5.86969, Settling
time = 0.959175, Peak time = 0.679904

Control Systems 159

-loix]

File Edit Wew Insert Tools ‘Window Help

Inz@alxarspen

Step Response

Amplitude

00 05 1 15 2 25 3 35 4 45 5

Time (sec)

Fig. E3.13 (d)

Example E3.14: Write a program in MATLAB for a unity-feedback system with
K(s+7)

(s* +35+52)(s> + 25 +35)

(@) plot the Nyquist diagram

G(s) =

(b) display the real-axis crossing value and frequency.

Solution:
>> %MATLAB Program
>> numg= [1 7]
>> deng=conv ([1 3 52], [1 2 35]);
>> G=tf (numg, deng)
>> ‘G(s)’
>> Gap=zpk (G)
>> inquest (G)
>> axis ([-3e-3, 4e-3,-5e-3, 5e-31])

160

MATLAB: An Introduction with Applications

>>w=0:0.1:100;

>> [re, im] =nyquis t (G, w);

>> for i=1:1: length (w)

>> M (1) =abs (re (i) +j*im (i));

>> A (i) =atan2 (im (i), re (i))=*(180/pi);
>> 1f 180-abs (A (1)) <=1;

>> re (1) ;

>> im (i) ;

>> K=1/abs (re (1)) ;

>> fprintf (*\nw =%g’, w (1))
>> fprintf (', Re=%g’, re (1))
>> fprintf (', Im =%g’, im (1))
>> fprintf (', M=%g’, M (1))
>> fprintf (', K=%g’, K)

>> Gm=20*1logl0 (1/M (1)) ;

>> fprintf (', Gm=&G’, Gm)

>> break

>> end

>> end

Computer response:
numg =
1 7
Transfer function:
s+7
s"4+55"3+935"2+209s+1820

ans =
G(s)
Zero/pole/gain:
(s+7)
(s"2+2s+35)(s"2+35+52)

The Nyquist plot is shown in Fig. E3.14.

Control Systems 161
-1o/x]
File Edit Wiew Insert Tools MWindow Help
DeE&E& xAA/ 2R
%1072 Nyquist Diagram
5 ! T T T
4_ ol
3r i
2+ 4
.8
2 1r 4
5
c Qs R e e s s e =
?
E =Ir .
21 s
-3}]
4+]
= Il 1 1
5—3 1 2 3 4
Real Axis x10~°

Fig. E3.14

Example E3.15: Determine the unit-ramp response of the following system using MATLAB and Isim
command.

C(s) 1
R(s) 3s>+2s+1
Solution:
>> % MATLAB Program

>> % Unit-ramp response

>>num =[0 0 1];

>>den =[3 2 1];

>> t=0:0.1:10;

>>r=t;

>>y =1lsim(num,den,r, t) ;

>> plot(t, r,'-', t,y, ‘0o’)

>> grid

>> title (‘Unit-ramp response’)

>> xlabel (‘t Sec’)

>> ylabel (‘Unit-ramp input and output’)
>> text (1.0, 4.0, ‘Unit-ramp input’)
>> text (5.0,2.0, ‘Output’)

162

MATLAB: An Introduction with Applications

J} Figure Mo. 1 -|O) x

File Edit Wiew Insert Tools ‘Window Help

DEEdES NA A/ 2P0

Unit-ramp response

10

A LR A T e Y e D e IO R e T

4f--- Unit-rampinput A=-------- g - - e e

Unit-ramp input and output

Fig. E3.15 Unit-ramp response

Example E3.16: A higher-order system is defined by

C(s) 7s* +16s+10
R(s) s*+55° +11s* +16s+10

(a) plot the unit-step response curve of the system using MATLAB
(b) obtain the rise time, peak time, maximum overshoot and settling time using MATLAB.

Solution:
>> %Unit-step response curve
>>num=[0 0 7 16 10];
>>den=[15 1116 10];
>> t=0:0.02:20;
>> [y,x,t]=step(num,den, t) ;
>> plot (t, y)

>> grid

Control Systems 163

>> title (‘'Unit-step response’)
>> xlabel (‘t Sec’)
>> ylabel (‘Output y(t) ')

} Figure Mo. 1 -0 x

File Edit Wiew Insert Tools Sdindow Help

DS " A2/ 220

Unit-step response

1.6

| e R

12}-{-=-b------

-

o
©

Output y(t)

)
o

o
i

021 oo

| e et e e e T

o
-

. B N AL

—
't
'®d
10

Fig. E3.16 Unit-step response

>> $Response to rise from 10% to 90% of its final value
>>rl=1;whiley(rl)<0.1l,rl=rl+1;end
>>r2=1;while y(r2)<0.9,r2=r2+1;end

>> rise time=(r2-rl)*0.02

rise time =
0.5400
>> [ymax, tp] =max (y) ;
>> peak time= (tp-1)*0.02

164

MATLAB: An Introduction with Applications

peak time =
1.5200
>> max_overshoot = ymax-1
max_overshoot =
0.5397
>> 5=1001;while y(s)>0.98 & y(s)<1.02;s=s-1;end
>> settling time=(s-1)*0.02
settling time =
6.0200

Example E3.17: Obtain the unit-ramp response of the following closed-loop control system whose closed-
loop transfer function is given by

C(s) _ s+12
R(s) s°+5s°+8s+12

Determine also the response of the system when the input is given by

r = 670.71

Solution:
>> % Unit-ramp response — Isim command
>>num= [0 01 12];
>>den=[15 8 12];
>>t=0:0.1:10;
>> r=t;
>>y=1sim(num,den,r, t) ;
>> plot (t,r, ‘-', t,y, ‘0")
>> grid
>> title (‘Unit-ramp response’)
>> xlabel ('t Sec’)
>> ylabel (‘Output’)
>> text (3.0,6.5, ‘Unit-ramp input’)
>> text (6.2,4.5, ‘Output’)

Control Systems

165

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

2} Figure No. 1
File Edit View Insert Tools ‘Window Help

D& NA A/ 2o

Unit-ramp response

10 ; . '
e A
Unit-ramp input
|
> 1 1
o ' '
5 ' .
(©) ' Output 1
. I— I " S s S - N— .
- S N— y—
0 = | i i
0 2 4 6 8 10
t Sec

Fig. E3.17(a) Unit-ramp response curve

$Input rl=exp(-0.7t)

num=[0 0 1 12];

den=[15 8 12];

£t=0:0.1:12;

rl=exp(-0.7*t) ;
yl=1lsim(num,den,rl,t);

plot (t,rl, *-', t,yl, ‘0o’)

grid

title (*Response to input rl=exp(-0.7t) ")
xlabel ('t Sec’)

ylabel (‘Input and output’)

text (0.5,0.9, ‘Input rl=exp(-0.7t)")
text (6.3,0.1, ‘Output’)

166

MATLAB: An Introduction with Applications

) Figure Mo. 1 - Ol x

File Edit Wew Insert Tools ‘Window Help

DeE& "AA A/ | 2P0

Response to input r1=exp (-0.7t)

1.2

| e e

5 :
£ 06 ﬁ)— ------ P e e e

8 i [} 1

% h :%} :
[y I P i SR O U U |

= 0.4 T : :

g & : :
0.2 g b L L S R R N L L L R

o D L e e S T e e e SN T

]
'
1
]
]
r
]
1
1
]
]
r
]
1
1
]
]

________ L et s
]
1
1
'
]
L
]
]
1
'
]
'
r
]
1
'

55

|
o
N

© |- -
-
o

H
6
t Sec

o
Nb-----
NG I

12

Fig. E3.17(b) Response curve for input r= e -7t

Example E3.18: A unity-feedback control system is defined by the following feedforward transfer function
K

s(s*+75+9)

(a) determine the location of the closed-loop poles, if the value of gain is equal to 3

(b) plot the root loci for the system using MATLAB.

G(s)=

Solution:
>> 9% MATLAB Program to find the closed-loop poles
>>p=[179 3];
>> roots (p)
ans =
-5.4495
-1.0000
-0.5505

Control Systems

167

>> % MATLAB Program to plot the root-loci
>>num=[0 0 0 1];
>>den=[15 9 0] ;

>> rlocus (num,

den) ;

>> axis (‘square’)

>> grid

>> title (*Root-locus plot of G(s) ')

15

10F

s
O
()
[y

Imaginary Axis
o
N

-15

-6 -14 12 -10 -8 -6 -4 -2

Example E3.19: The open-loop transfer function of a unity-feedback control system is given by

G(s) =

Fig. E3.18 Root-locus plot of G(s)

1

s +045°+7s+1

(@) draw a Nyquist plot of G(s) using MATLAB
(b) determine the stability of the system.

Solution:

>> % Open-loop poles
>>p=[10.471];

>> roots (p)

168 MATLAB: An Introduction with Applications

ans =

-0.1282 + 2.63571

-0.1282 - 2.63571

-0.1436
>> % Nyquist plot
>>num=[000 1];
>>den =[10.4 7 1];
>> nyquist (num, den)
>> v=[-3 3 -2 2] ;axis(v) ;axis (‘square’)
>> grid
>> title (*‘Nyquist plot of G(s)’)

Nyquist Diagram

1 T T T T T T T T

0.8f .

0.6 .

0.4} .

0.2f 4

Imaginary Axis

0.2

0.4

0.6

0.8

0.8

0.6

1
0.4

1
0.2

0

0.2

0.4

0.6

0.8

Fig. E3.19 Nyquist plot of G(s)
There are two open-loop poles in the right half s plane and no encirclement of the critical point, the closed-

loop system is unstable.

Example E3.20: For the closed-loop control system shown in Fig. E3.20, obtain the range of gain K for
stability and plot a root-locus diagram for the system.

Control Systems 169

R(s) + K(32+ 25+ 5) > C(s)

s(s+3)(s+5)(s%1.55+1)

Fig. E3.20

Solution:
The range of gain K for stability is obtained by first plotting the root loci and then finding critical points
(for stability) on the root loci. The open-loop transfer function G(s) is
K(s*+2s5+5)
C s(s+3)(s+5)(s? +1.55+1)

G(s)

K(s* +2s5+5)
$°+9.55% + 285 + 205 +15s

A MATLAB program to generate a plot of the root loci for the system is given below. The resulting root-
locus plot is shown in Fig. E3.20(a).

% MATLAB Program

num= [0 O 0125];

den=[1 9.5 2820150];

rlocus (num, den)

v=[-8 2 -55]; axis(v); axis (‘square’)
grid

title (*Root-Locus Plot’)

Root Locus

5

Imag Axis

Real Axis
Fig. E3.20 (a)

170

MATLAB: An Introduction with Applications

From Fig. E3.20(a), we notice that the system is conditionally stable. All critical points for stability lie on the
J axis.
To obtain the crossing points of the root loci with the jo axis, we substitute s = j® into the
characteristic equation
$°+9.55% + 285> + 2052 +155 +K(s2 + 25 +5)=0
or (jw)’ +9.5(iw)* + 28(jw)® + (20 + K)(jw)> + (15 + 2K)(jo) + 5K =0
or
[9.50* — (20 + K) @ + 5K] + j[®° — 28’ + (15 + 2K) ®] = 0
Equating the real part and imaginary part equal to zero, respectively, we get

9.50* -~ 20+ K) w* + 5K=0 (1)
@ —280 +(15+2K) =0 -(2)
Equation (2) can be written as
0=0
or @ —280? +15+2K=0 ..(3)
P —u)4+228oo2—15 @

Substituting Eq.(4) into Eq.(1), we obtain
9.50% - [20 + Y2 (—0* + 28w* —15)] @ — 2.50* + 700? — 37.5 =0
or
0.50° — 20* + 57.500> —~37.5=10
The roots of the above equation can be obtained by MATLAB program given below.

% MATLAB Program
a=[0.5 0-2 0 57.5 0 -37.5];
roots (a)

MATLAB Output:
ans =
—2.4786 + 2.1157i
—2.4786 — 2.1157i
2.4786 + 2.1157i
2.4786 — 2.1157i
0.8155
—0.8155

The root-locus branch in the upper half plane that goes to infinity crosses the jo axis at ® = 0.8155. The
gain values at these crossing points are given by

K- —0.8155* +28x%0.8155% —15
2

=1.5894 for ®w=0.8155

Control Systems 171

For this K value, we obtain the range of gain K for stability as
1.5894>K>0

Example E3.21: For the control system shown in Fig. E3.21:
(a) plot the root loci for the system

(b) find the value of K such that the damping ratio { of the dominant closed-loop poles is 0.6
(¢c) obtain all closed-loop poles
(d) plot the unit-step respond curve using MATLAB.

+ K

v

| S(s+3)(s+5)

Fig. E3.21

Solution:

(@) The MATLAB program given below generates a root-locus plot for the given system. The resulting
plot is shown in Fig. E3.21(a).

% MATLAB Program

num = [0 0 0 11;

den = [1 8 15 0];

rlocus (num, den)

v=1[-6 4 -5 5]; axis(v); axis(‘square’)
grid

title (*Root-Locus Plot’)

Root Locus

5

Imag. Axis
o

-6 _zlt —2I 0 2 4
Real Axis
Fig. E3.21(a)

172

MATLAB: An Introduction with Applications

(b) We note that the constant £ points (0 < { < 1) lie on a straight line having angle 8 from the jo axis as
shown in Fig. E3.21(b).

Constant line

Lo, |
Fig. E3.21(b)

From Fig. E3.21(b), we obtain

sin® = 5o, =C
Also that £ = 0.6 line can be defined by
s =-0.75a + ja

where a is a variable (0 < a < o). To obtain the value of K such that the damping ratio { of the dominant
closed-loop poles is 0.6, we determine the intersection of the line s = —0.75a + ja and the root locus. The
intersection point can be obtained by solving the following simultaneous equations for a.

s =-0.75a + ja (1)
ss+3)(s+5+K=0 (2
From Egs. (1) and (2), we obtain
(= 0.75a + ja)(-0.75a + ja + 3)(-0.75a + ja +5) + K= 0
or
(1.8281a* - 2.1875a% — 3a + K) +j(0.6875a3 — 7.5a*> + 15a)= 0
Equating the real part and imaginary part of the above equation to zero, respectively, we obtain

1.8281a% —2.1875a*> ~3a + K =0 ..(3)
0.6875a> —7.5a> +4a =0 (4
Equation (4) can be rewritten as
a=0
or 0.6875a> —7.5a+4=0
or
a*—10.90991a + 5.8182 =0
or (a—0.5623)(a — 10.3468) = 0
Therefore, a=0.5323 or a = 10.3468

From Eq.(3), we obtain
K=-1.8281a%+2.1875a%> + 3a = 2.0535 fora= 0.5626
K =-1.8281a% + 2.1875a* + 3a = —1759.74 for a = 10.3468

Since the K value is positive for a = 0.5623 and negative for a = —10.3468, we select a = 0.5623. The required
gain K is 2.0535.

Control Systems 173

The characteristic equation with K = 2.0535 is then
S(s+3)(s+5)+2.0535=0
or s+ 852+ 155 +2.0535=0

(¢) The closed-loop poles can be obtained by the following MATLAB program.

% MATLAB Program
p=1[18 15 2.0535];

roots (p)

ans =
-5.1817
-2.6699
-0.1484

Hence, the closed-loop poles are located at
s =-5.1817, s=-2.6699, s =-4.1565.

(d) The unit-step response of the system for K = 2.0535 can be obtained from the following MATLAB
program. The resulting unit-step response curve is shown in Fig. E3.21(c).

% MATLAB Program

num = [0 0 0 2.0535];

den = [1 8 15 2.0535];

step (num, den)

grid

title (‘Unit-Step Response’)

xlabel ('t Sec’)

ylabel (‘Output’) .

~ Step Response

1

0.9

0.8

0.7

0.6

0.5

Amplitude

0.4

0.3

0.2

0.1

0 5 10 15 20 25 30 35 40
Time (sec)

Fig. E3.21 (c)

174

MATLAB: An Introduction with Applications

Example E3.22: The open-loop transfer function of a unity-feedback control system is given by

K

Gs)= ——
© s(s2 +s5s+5)

(a) determine the value of gain K such that the phase margin is 50°
(b) find the gain margin for the gain K obtained in (a).

Solution:

G(s) =

s(s2 +s5s+5)

The undamped natural frequency is /5 rad/s and the damping ratio of 0.1. /5 from the denominator.
Let the frequency corresponding to the angle of —130° (Phase Margin of 50°) be m, and therefore

ZG(jo,) =-130°
The Bode diagram is shown in Fig. E3.22 from MATLAB program.

Bode Diagram

20
@ ofr .
=
(]
3 20} -
‘e
g
S —40f E
—60 1
-90 T
—~-135[.
[@]
(0]
=
o —180 | i
(2]
@
<
o 2251+ E
—-270))) . .
107" 10° 10’
Frequency (rad/sec)
Fig. E3.22

From Fig. E3.22, the required phase margin of 50° and occurs at the frequency ® =1.06 rad/s. The magnitude
of G(jm) at this frequency is then —7 dB. The gain K must then satisfy

Control Systems 175

20log K =7 dB
or K=223
Example E3.23: Obtain the state-space representation of the following system using MATLAB.

C(s) 35s+7
R(s) s'+5s+36s+7

Solution:
A MATLAB program to obtain a state-space representation of this system is given below.
% MATLAB Program

>> num=[0 0 35 7];

>> den=[1 5 36 7];

>> g=tf (num, den)

Transfer function:

35s+7
$"3+5s"2+36s+7
>> [A,B,C,D]=tf2ss (num,den)
A =
-5 -36 -7
1 0 0
0 1 0
B =
C =
0 35 7
D =
0

From the MATLAB output, we obtain the following state space equations:
X, -5 =36 -7||x 1
X =1 0 0 [lx|+|0fu
X 0 1 0 |[x 0
X
y=1[0 7] x, | +[0Ju

X3

176

MATLAB: An Introduction with Applications

Example E3.24: Find the transfer function for the following system using MATLAB.

Solution:

The transfer function matrix is given by

where

Hence

5] [o 1 o][x] [0 o
X =15 -2 0 |[x|+|3 -llu
5l Lo 2 —6flxn] [5 0
~ xl_
1 00
= X
"o o 1™
B X3]
G(s)=C[sI - A]'B
[0 1 0 0 0
A=|-5 =2 0| B=[3 -1 cz[
(0 2 -6
i s -1 010
1 00
G(s) = 5 s+2 0 ||3
001
- 0 -2 s+6]|5

0
-1
0

0 0 1

|

>> % MATLAB Program

>> syms s

>>C=[100;001];

>>M=[s -10;5s+20; 0 -2 s+6];
>>B=[00;3 -1;5 0] ;

>> C*inv (M) *B

ans =
[3/(s"2+2*%s+5), -1/ (s"2+2*s+5)]
[6*%s/(873+8*s™2+17*s+30) +5/ (s+6), -2*s/(s”3+8*s"2+17*s+30)]

Example E3.25: Determine the transfer function G(s) = Y(s)/R(s), for the following system representation in
state space form.

0 3 70 0

. 0 0 10 5

X = X+ r
0 0 01 7
-5 -6 9 5 2

y=[1365]x

177

Control Systems

Solution:
A=[0350;0010;0001;-5-685];
B=[0;5;7;21;

C=[13 7 5];
D=0;
statespace=ss(A,B,C,D)

a =
x1l x2 X3 x4
x1l O 3 5 0
x2 0 0o 1 0
x3 0 0 0 1
x4 -5 -6 8 5
b =
ul
x1 0
x2 5
x3 7
x4 2
c =
x1 x2 x3 x4
vl 1 3 7 5
d =
ul
vl 0

Continuous-time model.

[A,B,C,D]=tf 2ss(num,den) ;
G=tf (num, den)

Transfer function:

s"4+3s"3+10s"2+5s+6
"5+ 78" 4+8s"3+6s8"2

Example E3.26: Determine the transfer function and poles of the system represented in state space as
follows using MATLAB.

9 -3 -1 [1
i=|-3 2 0 |+|2]u@
6 8 2| |3

178 MATLAB: An Introduction with Applications

0
y=[2 9 —12]x;x(0)=10
0
Solution:
% MATLAB Program
>>A = [8 -34;-710;3 4 -7]
A =
8 -3 4
-7 1 0
3 4 =7
>> B=[1;3;8]
B =
1
3
8
>> C=[1 7 -2]
C =
1 7 -2
>> D=0
D =
0
>> [numg, dengl=ss2tf(A,B,C,D,1)
numg =
1.0e + 003 *
0 0.0060 0.0730 -2.8770
deng =

1.0000 -2.0000 -88.0000 33.0000
>> G=tf (numg, deng)
Transfer function:

6s"2 + 73s - 2877
s"3 - 25”2 — 88s + 33

>> poles=roots (deng)

poles =
10.2620
-8.6344
0.3724

Example E3.27: A control system is defined by

N M W

Control Systems 179

nil_ (1 0flx
»n] [0 1]lx
Plot the four sets of Bode diagrams f or the system [two for inputl, and two for input 2] using MATLAB.

Solution: There are 4 sets of Bode diagrams (2 for inputl and 2 for input 2)
>> 9% Bode Diagrams
>> A=[0 1;-25 -9];
>> B=[1 1;0 1];
>> C=[1 0;0 1];
>> D=[0 0;0 0];
>> bode (A,B,C,D)
Bode Diagram
From: In(1) From: In(2)

To: Out(1)
3

N
o
o

To: Out(1)
Lk
o [é)] o

Magnitude (dB); Phase (deg)
)
o

To: Out(2)

J
|

—~100 1 L L L
180

To: Out(2)
(=)

-180 L 1 1 1

10° 102 10° 10°

Frequency (rad/sec)

Fig. E3.27 Bode diagrams

Example E3.28: Draw a Nyquist plot for a system defined by

R MM

180 MATLAB: An Introduction with Applications

y=1 0]|:x1:|+[0]u

X2
using MATLAB.

Solution: Since the system has a single input # and a single output y, a Nyquist plot can be obtained by
using the command nyquist (4, B, C, D) or nyquist (4, B, C, D, 1).

>> % MATLAB Program

>> A=[0 1;-25 5];

>> B=[0;20];

>> C=[1 0];

>> D=[0] ;

>> nyquist (A,B,C,D)

>> grid

>> title (‘Nyquist plot’)

The Nyquist plot is shown in Figure E3.28.

Nyquist Plot
4482 dB-, 0B ".—2 dB —4dB
0.8}, . - .
066 dB\‘\ ““ : B P T N\
0.4 10 dB \\ oo 0 1odB
2 02 ,
< 20 dB ;
P o :
[R T D e IR
(@)} -
©
E-02}
N S N
—06F LS NG e
-08F
-1 W L N ! el .
-1 -0.8 -0.6 -04 -02 0 0.2 0.4 0.6 0.8

Real Axis

Fig. E3.28 Nyquist plot

Example E3.29: Obtain the unit-step response, unit-ramp response, and unit-impulse response of the
following system using MATLAB.

Control Systems 181

N M
ol

where u is the input and y is the output.

)

y

Solution:
>> % Unit-step response
>>A=[-1-1.5;20];
>>B=[1.5;0];
>>C=[10];
>>D=[0];
>>y,x,t]l=step(A,B,C,D);
>> plot (t,y)
>>grid
>>title('Unit-step response’)
>> xlabel ('t Sec’)
>> ylabel (‘Output’)

=) Figure No. 1 !EH

File Edit Wiew Insert Tools ‘Window Help

D& kA" 2LDT

Unit-step response

0.6
0.5
0.4f
0.3}

:a 0.2

3 0.1

0
-0.1
-0.2

-0.3

t Sec
Fig. E3.29 (a) Unit-step response
>> % Unit-ramp response

>> A=[-1 -1.5; 2 0];
>> B=[1.5; 0];

182 MATLAB: An Introduction with Applications

>> C=[1 0];
>> D=[0];

>> % New enlarged state and output equations

>> AA=[A zeros (2, 1); C 0];

>> BB=[B; 0] ;

>> CC=[0 1];

>> DD=[0];

>> [z, x, t] =step (AA, BB, CC, DD);

>> x3= [0 0 1]*x’; plot (t, x3, t, t,'-")
>> grid

>> title (‘Unit-ramp response’)

>> xlabel ('t Sec’)

>> ylabel (‘Output and unit-ramp input’)
>> text (12, 1.2, ‘Output’)

=TS

File Edit “ew Insert Tools ‘window Help
IDEd& YA A/ PO

Unit-ramp response

A : . :
s L I R baceeans e
- E— SN —— I SO
5 Ao frensennnnnaens oo o
Q. ' ' '
£ : : '
o 12f-----eeeeeeee- T EEEEE L LECEEEEE e
£ : : :
o : : ;
L T Ay e T e s e L e
c ' 1 '
= ! ' :
-8 8"""""""'":""""' """i """""""" R R R R TR
© I ' '
§_ (o) B .. TS B s s s et
= '
o ! : 1
QU 0 g G G G R G G R
RN R AEh E Are e
! ! OUtpUt !
0 1 : 1
0 5 10 15 20

t Sec

Fig. E3.29 (b) Unit-ramp response

>> % Unit-impulse response
>>A= [-1-1.5; 20];
>>B= [1.5; 0] ;

Control Systems 183

>> C= [10];
>> D= [0];
>> impulse (A, B, C, D)

=

File Edit View Insert Tools ‘Window Help

lDzmae a2, 2o

Impulse Response

1.5

Amplitude

-0.5

-1 1 I I
0 2 4 6 8 10 12

Time (sec)

Fig. E3.29(c) Unit-impulse response

Example E3.30: Obtain the unit-step response and unit-ramp response of the following system using
MATLAB.

X =5 =30 5| x 1
X =11 0 0 x|+|0]|u
X3 0 1 0]| x5 0
X
y=[0 20 5]|x, [+[0]u
X3

Solution:
>> 9% MATLAB Program
>>A=[-5-30-5;100; 010];

184

MATLAB: An Introduction with Applications

>>B=[1; 0; 0];

>> C=[0205];

>>D=[0];

>> [y, X, t]l=step (A, B, C, D);
>>plot (t, vy)

>>grid

>> title(‘Unit-response’)

>> xlabel (‘t Sec’)

>> ylabel (‘Output v (t) ')

1

Unit Response

/
0.9

0.8 A

V.

0.7

0.6

0.5

Output y(t)

0.4

0.3

0.2

0.1

0 5 10 15
t Sec

20 25 30

Fig. E3.30(a) Unit-step response

Unit-ramp response:

-5 =30 -5 0 0
1 0 0 O A 0
AA = =
0 1 0 0 0
0 25 5 0 0 25 50

=4 [zeros (2, 1); C 0]

35

Control Systems 185
1
0 B
BB = =
0
0 0
CC=[0 25 5 O]Z[C 0]
>> 9% MATLAB Program
>> A =[-5 -30 -5; 10 0; 01 0];
>> B =[1; 0; 0];
>> C =[0 25 5];
>> D =[0];
>> AA =[A zeros (3, 1); C 0];
>> BB=[B; 0];
>> CC=[C 0];
>> DD =[0];
>> £t=0:0.01:5;
>> [z, x, t] =step (AA, BB, CC, DD, 1, t);
>> P =[000 1]*x’;
>> plot (t, P, t, t)
>> grid
>> title (‘Unit-ramp response’)
>> xlabel ('t Sec’)
>> ylabel (‘Input and output’)
Unit-ramp Response
5
Y] S NP SIS NP S D S ———
) SO S S O
C] SSUR U S R SRS SRR SOONS ~ A 92l S
- SURURS TSSO SUUNON NSURN SRR -G0S D2t SR SO
S I R Vs N
R 2.5f----- HRRE R N N N~ T R . R
2 2}----- A PR R o o R R R e
£
] R S0 5520l (Rt SIS LU LU SIS SR
1 oeendennsss A AR SRERE, oy RRRRR R SRR,
L el B e e S S
0 :
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

t Sec
Fig. E3.30 (b) Unit-ramp response

186

MATLAB: An Introduction with Applications

Example E3.31: Consider the system

a0 30 0x

The output is given by
X
y=[11 1]|x,
X3
(a) determine the observability of the system using MATLAB
(b) show that the system is completely observable if the output is given by

X
n_ 111 N
vl (13 2 x2
3
using MATLAB.

Solution:
>> % MATLAB Program
>>A=[300; 010; 03 2];
>> C=[111];
>> rank ([C’ A’*C’ A'"2*%C'])
ans =
3
>>A=[3 00; 01 0; 03 2];
>>C=[111; 13 2];
>> rank ([C’ A’%C’ A'"2xC’'])
ans =
3
From the above, we observe that the system is observable and controllable.

Example E3.32: Consider the following state equation and output equation
X, -1 3 2| x 3
X =10 -2 1 ||x[+|0]|u
X 1 0 -1 x |
X
y=[1 1 0]|x,
X3

Control Systems 187

Determine if the system is completely state controllable and completely observable using MATLAB.

Solution:

The controllability and observability of the system can be obtained by examining the rank condition of
[B AB A’B] and [C'A’'C' (A")2C]

>> % MATLAB Program

>>A=[-1-3-2; 0-21; 10 -17;

>> B=[3; 0; 1];

>> C=[11 0];

>> D=[0];

>> rank ([B A*B A"2+*B])

ans=

3

>> rank ([C’ A’xC’ A'"2xC'])
ans=

3

We observe the rank of [B AB A”B] is 3 and the rank of [C' A™*C’ (A") 2*C"] is 3, the system is completely
state controllable and observable.

Example E3.33: Determine the eigenvalues of the following system using MATLAB.

0o 2 O 0
x=10 2 -9|x+|0|r
-2 2 5 2

y=[0 0 1]x

Solution:
>>A=[020;02-7; -225]; $Define the matrix above
>>eig (A) %Calculate the eigenvalues of matrix A.
ans =
2.0000
2.5000 + 3.42781
2.5000 - 3.42781

188

MATLAB: An Introduction with Applications

REFERENCES

Anand, D.K., Introduction to Control Systems, 2" ed., Pergamon Press, New York, NY, 1984.

Atkinson, P., Feedback Control Theory for Engineers, 2" ed., Heinemann, 1977.

Bateson, R.N., Introduction to Control System Technology, Prentice-Hall, Upper Saddle River, NJ, 2002.
Bayliss, L.E., Living Control Systems, English Universities Press Limited, London, UK, 1966.

Beards, C.F., Vibrations and Control System, Ellis Horwood, 1988.

Benaroya, H., Mechanical Vibration—Analysis, Uncertainties, and Control, Prentice-Hall, Upper Saddle
River, NJ, 1998.

Bode, H.W., Network Analysis and Feedback Design, Van Nostrand Reinhold, New York, NY, 1945.
Bolton, W., Control Engineering, 2" ed., Addison Wesley Longman Ltd., Reading, MA, 1998.
Brogan, W.L., Modern Control Theory, Prentice-Hall, Upper Saddle River, NJ, 1985.

Buckley, R.V., Control Engineering, Macmillan, New York, NY, 1976.

Burghes, D., and Graham, A., Introduction to Control Theory Including Optimal Control, Ellis Horwood,
1980.

Cannon, R.H., Dynamics of Physical Systems, McGraw-Hill, New York, NY, 1967.
Chesmond, C.J., Basic Control System Technology, Edward Arnold, 1990.
Clark, R.N., Introduction to Automatic Control Systems, Wiley, New York, NY, 1962.

D’Azzo, J.J. and Houpis, C.H., Linear Control System Analysis and Design: Conventional and Modern,
4t ed.. McGraw-Hill, New York, NY, 1995.

Dorf, R.C. and Bishop, R.H., Modern Control Systems, 9™ ed., Prentice-Hall, Upper Saddle River, NJ, 2001.
Dorsey, John, Continuous and Discrete Control Systems, McGraw-Hill, New York, NY, 2002.

Douglas, J., Process Dynamics and Control, Volumes I and II, Prentice-Hall, Englewood Cliffs, NJ, 1972.
Doyle, J.C., Francis, B.A. and Tannenbaum, A., Feedback Control Theory, Macmillan, New York, NY, 1992.
Dransfield, P., and Habner, D.F., Introducing Root Locus, Cambridge University Press, Cambridge, 1973.
Dukkipati, R.V., Control Systems, Narosa Publishing House, New Delhi, India, 2005.

Dukkipati, R.V., Engineering System Dynamics, Narosa Publishing House, New Delhi, India, 2004.
Dukkipati, R.V., Vibration Analysis, Narosa Publishing House, New Delhi, India, 2004.

Evans, W.R., Control System Dynamics, McGraw-Hill, New York, NY, 1954.

Eveleigh, V.W., Control System Design, McGraw-Hill, New York, NY, 1972.

Franklin, G.F., David Powell, J. and Abbas Emami-Naeini, Feedback Control of Dynamic Systems, 3" ed.,
Addison Wesley, Reading, MA, 1994.

Friedland, B., Control System Design, McGraw-Hill, New York, NY, 1986.

Godwin, Graham E., Graebe, Stefan F. and Salgado, Maria E., Control System Design, Prentice-Hall, Upper
Saddle River, NJ, 2001.

Grimble, Michael J., Industrial Control Systems Design, Wiley, New York, NY, 2001.
Gupta, S., Elements of Control Systems, Prentice-Hall, Upper Saddle River, NJ, 2002.
Guy, J.J., Solution of Problems in Automatic Control, Pitman, 1966.

Control Systems 189

Healey, M., Principles of Automatic Control, Hodder and Stoughton, 1975.

Jacobs, O.L.R., Introduction to Control Theory, Oxford University Press, 1974.

Johnson, C. and Malki, H., Control Systems Technology, Prentice-Hall, Upper Saddle River, NJ, 2002.
Kailath, T., Linear Systems, Prentice-Hall, Upper Saddle River, NJ, 1980.

Kuo, B.C., Automatic Control Systems, 6™ ed., Prentice-Hall, Englewood Cliffs, NJ, 1991.

Leff, P.E.E., Introduction to Feedback Control Systems, McGraw-Hill, New York, NY, 1979.

Levin, W.S., Control System Fundamentals, CRC Press, Boca Raton, FL, 2000.

Levin, W.S., The Control Handbook, CRC Press, Boca Raton, FL, 1996.

Lewis, P. and Yang, C., Basic Control Systems Engineering, Prentice-Hall, Upper Saddle River, NJ, 1997.
Marshall, S.A., Introduction to Control Theory, Macmillan, 1978.

Mayr, O., The Origins of Feedback Control, MIT Press, Cambridge, MA, 1970.

Mees, A.J., Dynamics of Feedback Systems, Wiley, New York, NY, 1981.

Nise, Norman, S., Control Systems Engineering, 3" ed., Wiley, New York, NY, 2000.

Ogata, K., Modern Control Engineering, 3" ed., Prentice-Hall, Englewood Cliffs, NJ, 1997.

Ogata, K., State Space Analysis of Control Systems, Prentice-Hall, Upper Saddle River, NJ, 1967.
Ogata, K., System Dynamics, 3" ed., Prentice-Hall, Upper Saddle River, NJ, 1998.

Palm III, W.J., Control Systems Engineering, Wiley, New York, NY, 1986.

Paraskevopoulos, P.N., Modern Control Engineering, Marcel Dekker, Inc., New York, NY, 2003.

Phillips, C.L. and Harbour, R.D., Feedback Control Systems, 4™ ed., Prentice-Hall, Upper Saddle River, NJ,
2000.

Power, H.M. and Simpson, R.]J., Introduction to Dynamics and Control, McGraw-Hill, New York, N, 1978.
Raven, F.H., Automatic Control Engineering, 4" ed., McGraw-Hill, New York, NY, 1987.

Richards, R.J., An Introduction to Dynamics and Control, Longman, 1979.

Richards, R.J., Solving Problems in Control, Longman Scientific & Technical, Wiley, New York, NY, 1993.
Rohrs, C.E., Melsa, J.L. and Schultz, D.G., Linear Control Systems, McGraw-Hill, New York, NJ, 1993.
Rowell, G. and Wormley, D., System Dynamics, Prentice-Hall, Upper Saddle River, NJ, 1999.
Schwarzenbach, J. and Jill, K.F., System Modeling and Control, 2" ed., Arnold, 1984.

Shearer, J.L., Kulakowski, B.T. and Gardner, J.F., Dynamic Modeling and Control of Engineering Systems,
2nd e Prentice-Hall, Upper Saddle River, NJ, 1997.

Shinners, S. M., Modern Control System Theory and Design, 2" ed., Wiley Interscience, New York, NY,
1998.

Sinha, N.K., Control Systems, Holt Rinehart and Winston, New York, N, 1986.
Smith, O.J.M., Feedback Control Systems, McGraw-Hill, New York, NY, 1958.

Stefano,D.III., Stubberud, A.R. and Williams, 1.J., Schaum’s Outline Series Theory and Problems of
Feedback and Control Systems, McGraw-Hill, New York, NY, 1967.

Thompson, S., Control Systems: Engineering and Design, Longman, 1989.
Truxal, J.G., Control System Synthesis, McGraw-Hill, New York, NY, 1955.

190

MATLAB: An Introduction with Applications

Umez-Eronini, E., System Dynamics and Control, Brooks/Cole Publishing Company, Pacific Grove, CA,
1999.

Vu, H.V., Control Systems, McGraw-Hill Primis Custom Publishing, New York, NY, 2002.

Vukic, Z., Kuljaca, L., Donlagic, D. and Tesnjak, S., Non/inear Control Systems, Marcel Dekker, Inc., New
York, NY, 2003.

Welbourn, D.B., Essentials of Control Theory, Edward Arnold, 1963.
Weyrick, R.C., Fundamentals of Automatic Control, McGraw-Hill, New York, NY, 1975.

PROBLEMS

P3.1: [Reduction of multiple subsystems]: Reduce the system shown in Fig. P3.1 to a single transfer function,
T(s) = C(s)/R(s) using MATLAB.

The transfer functions are given as

G(s)=1/(s +3)

Gy(s) = 1/(s> + 35 + 5)
Gs(s)=1/(s+7)

Gy(s) = 1/s

Gs(s)=T/(s +5)

Gy(s) = 1/(s> + 35 + 5)

Go(s) =5/(s + 6)

Gg(s)=1/(s + 8)

P3.2: Obtain the unit-step response plot for the unity-feedback control system whose open loop transfer
function is

8

G(s)=————
s(s+1)(s+3)

Control Systems 191

using MATLAB. Determine also the rise time, peak time, maximum overshoot and settling time in the unit-
step response plot.

P3.3: Obtain the unit-acceleration response curve of the unity-feedback control system whose open loop
transfer function is given by

_ 8(s+1)
s’ (s+3)
using MATLAB. The unit-acceleration input is defined by

G(s)

mn=lﬂazm
2
P3.4: The feed forward transfer function G(s) of a unity-feedback system is given by

k(s+3)
G(S) = (S—)
(s +5)(s+4)
Plot the root loci for the system using MATLAB.
P3.5: For the unity feedback shown in Fig. P3.5, where

B K
C s(s+3)(s+4)(s+5)

G(s)

Obtain the following:
(a) display a root locus and pause
(b) draw a close-up of the root locus where the axes go from —2 to 0 on the real axis and -2 to 2 on
the imaginary axis
(¢) overlay the 15% overshoot line on the close-up root locus

(d) allow you to select interactively the point where the root locus crosses the 15% overshoot line,
and respond with the gain at that point as well as all of the closed-loop poles at that gain

e) find the step response at the gain for 15% overshoot.
(e) p resp g

R(s) +) C(s)
S »

Fig. P3.5

P3.6: For the system shown in Fig. P3.6, determine the following using MATLAB
(a) display a root locus and phase
(b) display a close-up of the root locus where the axes go from —2 to 2 on the real axis and -2 to 2
on the imaginary axis
(¢) overlay the 0.707 damping ratio line on the close-up root locus
(d) obtain the step response at the gain for 0.707 damping ratio.

192 MATLAB: An Introduction with Applications
R(s) + K C(s) .
s(s+3)(s+5)(s+7) g

(s+25)

(s?+10s +100)

Fig. P3.6

P3.7: Write a program in MATLAB to obtain a Bode plot for the transfer function

(557 +51s +20s + 400)

G(s)=
) (s* +125° +60s* +300s + 250)

P3.8: Write a program in MATLAB for the unity feedback system with G(s) = K/[s(s + 7) (s + 15)] so that
the value of gain K can be input. Display the Bode plots of ¢, a system for the input value of K. Determine
and display the gain and phase margin for the input value of K.

P3.9: Write a program in MATLAB for the system shown in Fig. P3.9 so that the value of K can be input
(K = 40).

Rs) T E(s) K(s+3) C(s)
s(s*+4s+20)

\4

Fig. P3.9

(a) Display the closed-loop magnitude and phase frequency response for unity feedback system
with an open-loop transfer function, KG(s).

(b) Determine and display the peak magnitude, frequency of the peak magnitude and bandwidth for
the closed-loop frequency response for the input value of K.

P3.10: Write a program in MATLAB for a unity feedback system with the forward-path transfer function
given by
+
G(s) = Z(S—3)

s(s™+4s+12)
(@) Draw a Nichols plot of an open-loop transfer function
(b) The user can read the Nichols plot display and enter the value of M,
(¢) Obtain the closed-loop magnitude and phase plots.
(d) Display the expected values of percent overshoot, settling time and peak time
(e) Plot the closed-loop step response.

Control Systems 193

P3.11: For the system shown in Fig. P3.11, write a program in MATLAB that will use an open-loop transfer
function G(s).

R(s) + 80(s+2) C(s)
s(s+1)(s+3)

System 1

R(s) + E(s) 40(s+3)(s+5)
s(s+2)(s+4)(s+6)

v

System 2
Fig. P3.11
(a) Obtain a Bode plot
(b) Estimate the percent overshoot, settling time and peak time
(¢) Obtain the closed-loop step response.
P3.12: Write a program in MATLAB for a unity-feedback system with
K(s+3)

G(s)=— B
(s +55+80)(s” +4s+20)

(a) Plot the Nyquist diagram
(b) Display the real-axis crossing value and frequency.

P3.13: Write a program in MATLAB to obtain the Nyquist and Nichols plots for the following transfer
function for &k = 30.
B k(s +1)(s+2+5i)(s+2—5i)

S+2)(s+5)(s+T)(s+2+Ti)(s+2—-Ti)

G(s)

P3.14: Write a program in MATLAB for a unity feedback system with the forward-path transfer function
given by
+
G(s)=— 0

s(s™+4s+12)
(a) Draw a Nichols plot of an open-loop transfer function
(b) The user can read the Nichols plot display and enter the value of M,
(¢) Obtain the closed-loop magnitude and phase plots.
(d) Display the expected values of percent overshoot, settling time and peak time
(e) Plot the closed-loop step response.

194

MATLAB: An Introduction with Applications

P3.15: For a unit feedback system with the forward-path transfer function

_ K

 s(s+3)(s+10)

and a delay of 0.5 second, estimate the percent overshoot for K = 40 using a second-order approximation.
Model the delay using MATLAB function pade(7, n). Determine the unit step response and check the
second-order approximation assumption made.

G(s)

P3.16: For the control system shown in Fig. P3.16:
(a) plot the root loci of the system
(b) find the value of gain K such that the damping ratio & of the dominant closed-loop poles is 0.5
(c) obtain all the closed-loop poles using MATLAB
(d) plot the unit-step response curve using MATLAB.

K

Input
s(s?2+ 5s+7)

» Output

Fig. P3.16

P3.17: Figure P3.17 shows a position control system with velocity feedback. What is the response c(?) to
the unit step input?

R(s) + + 80

C(s)
s(s + 3) "

A 4

1/s

0.15

Fig. P3.17
P3.18: The open-loop transfer function G(s)H(s) of a control system is

K K

G S H S): =
(S)H(s(s+0.5)(s> +0.55+8) st +5° +8.255% +4s

Plot the root loci for the system using MATLAB.

P3.19: Design a compensator for the system shown in Fig. P3.19 such that the dominant closed-loop poles
are located at s = —1 ij\/g.

+
—%%)—’ G (s) -

Fig. P3.19

h 4
v

Control Systems 195

P3.20: For the control system shown in Fig. P3.20:
(a) design a PID control G,(s) such that the dominant closed-loop poles located at s = —1 + 1.
(b) select a = 0.6 for the PID controller and find the values of K and b.
(¢) root-locus plot using MATLAB.

PID controller Plant G(s)
+
R(s) Kw > 52+1).8) > C(s)
- Ge(s)
Fig. P3.20

P3.21: Draw a Bode diagram of the open-loop transfer function G(s) of the closed-loop system shown in
Fig. P3.21 and obtain the phase margin and gain margin.

R(s) 18(s + 1) » C(s)
s(s +3)(s2 + 2s + 9)

Fig. P3.21

P3.22: A block diagram of a process control system is shown in Fig. P3.22. Find the range of gain for

stability.
Ke S
s+1

Fig. P3.22

\4

P3.23: For the control system shown in Fig. P3.23:
(a) draw a Bode diagram of the open-loop transfer function
(b) find the value of the gain K such that the phase margin is 50°
(¢) find the gain margin of the system with the gain obtained in (b).

+ (S+0.3 |12
s+ 0.7 s(s+ 2)

Fig. P3.23

\ 4

P3.24: Obtain the unit-step response and unit-ramp response of the following system using MATLAB.
X, -5 25 5||x 1
X (=1 0 O |[x|+]|0fu
X 0 1 0 || x; 0

196 MATLAB: An Introduction with Applications
X
y=[0 25 511 x, |+[0]u
X3

P3.25: For the mechanical system shown in Fig. P3.25, the input and output are the displacement x and y
respectively. The input is a step displacement of 0.4 m. Assuming the system remains linear throughout the
transient period and m = 3 kg, ¢ = 3 N-s/m, and k£ = 1 N/m, determine the response of the system using
MATLAB.

v
c |_> x
"
o\
Fig. P3.25

P3.26: Using MATLAB, write the state equations and the output equation for the phase-variable
representation for the following systems in Fig. P3.26.

R(s) R 3547 C(s)
s*+ 83+ 282475 +5

(a)

»

R(s) s*+3s%+ 10s? + 5s + 6 C(s)
s® + 7s* + 8s® + 6s?

(b)
Fig. P3.26

P3.27: Determine the transfer function and poles of the system represented in state space as following
using MATLAB.
9 5 2 2
x=[—4 1 0 |x+|5|u@®
3 5 -7 7
0
[T 7 2]x; x(0) =|0
0

<
Il

P3.28: Obtain the root locus diagram of a system defined in state space using MATLAB. The system
equations are

X=Ax+Bu and y=Cx+Du and u=r—-y

where r is the input and y is the output.

Control Systems

197

The matrices A, B, C, and D are:

0 1 0 0
A= 0 0 1| B=| 1
-150 -50 15 ~15
c=[1 0 0]

D=|0]

P3.29: Obtain the Bode diagram of the following system using MATLAB.

HEEE NN

ot ol

The input of the system is # and the output is y.

P3.30: A control system is defined by
X, -1 21| x 1 1|y
.= +
X, 75 0 ||x, 1 0]|lu,
i |1 Offx . 0 0w
v [0 1]|lx,] [0 0]lu,
Write a MATLAB program to obtain the following plots:

(@) two Nyquist plots for the input u; in one diagram
(b) two Nyquist plots for the input u, in one diagram.

P3.31: Obtain the unit-ramp response of the system defined by

B T
=t ol

where u is the unit-ramp input. Use Isim command to obtain the response.

P3.32: Obtain the response curves y(¢) using MATLAB for the following system.

MEER MK
e o]

198

MATLAB: An Introduction with Applications

The input u is given by:
(@) u = unit-step input
b) u=e?
The initial state x(0) = 0.
P3.33: Plot the step response using MATLAB for the following system represented in state space, where
u(t) is the unit step.
-3 2 0 0
x=[0 =7 1 |[x+|1|u®)
0 0 4 1
y=[0 1 1x
0

x(0)=|0
0

P3.34: Diagonalize the following system using MATLAB.

-10 =5 7 1
x=|15 4 -12|x+|2]|r

-8 -3 6 3
y=[1 -2 3

P3.35: Determine to unit-ramp response of the system defined by

MY HH
<t

using MATLAB where u is the unit-ramp input. Use Isim command in MATLAB.
P3.36: Obtain the unit-impulse response of the following system using MATLAB

X, 0 1]|[x 0
= +| |u
X, -1 2| x, 1
X
y=[1 1][1:|+[O]u.
P3.37: A control system is defined by
X -1 -3 3| x 3

X =10 -2 1 |[xy[+[O0]u
X 2 0 —1f|x 1

Xy

Control Systems 199

X
y=[1 2 0]x,
X3
Determine the controllability and observability of the system using MATLAB.

P3.38: Determine the eigenvalues of the following system using MATLAB.

0 1 0 0
x=|0 1 =5|x+|0]|u
-2 1 3 1

y=1[0 0 1]x
P3.39: For the following path of a unity feedback system in state space representation, determine if the
closed-loop system is stable using the Routh-Hurwitz criterion and MATLAB.
0 1 0 0
x=[0 I S5|x+|0]|u
-3 -4 -5 1
y=1[0 1 1]x
P3.40: Consider the differential equation system given by
y+4y+3y=0, y(0)=0.2 and y(0)=0.1

Find the state space equation for the system. Also, obtain the response y(¢) of the system subject to the
given initial conditions using MATLAB.

ONONO)

Thispage
Intentionally left
blank

CHAPTER

NUMERICAL METHODS

4.1 INTRODUCTION

In this chapter, we introduce the solution of system of linear algebraic equations using such methods as
the Gauss elimination method, LU decomposition method, Choleski’s decomposition, Gauss-Seidel method,
Gauss-Jordan method and Jacobi method. A procedure based on Jacobi rotations, the Householder
factorization, symmetric matrix eigenvalue problems, Jacobi method, Householder reduction to tridiagonal
form, Sturn sequence and QR method are presented for the treatment of algebraic eigenvalue problems.
Numerical examples using MATLAB are provided to illustrate the procedures.

4.2 SYSTEM OF LINEAR ALGEBRAIC EQUATIONS

Here, we consider the solution of # linear, algebraic equations in #» unknowns. A system of algebraic equations
has the form

Ay Ay o Ay, || M by
Ay Ay Ay || X _ b,

: : : : : : (4.1
R " | B b,

where the coefficients 4;; and the constants ; are known, and x; represents the unknowns.
Equation (4.1) is simply written as
Ax=b

4.3 GAUSS ELIMINATION METHOD

Consider the equations at some instant during the elimination phase.

202

MATLAB: An Introduction with Applications

FA“ A, Ay o Ay Alj Alnnblﬂ
0 Ay Ay - Ay AzA/ Ay, || b
0 0 A33 o A3k e A3j A3n b3
0 0 0 Ay, Ay A b_k < pivot row
' ' : (42)
0 0 0 o Ay - Aij o Ay || by = row being transformed
0 0 0 Ank Anj Ann bn

In the above Eq.(4.2), the first k£ rows of 4 have already been transformed to upper triangular form. Hence,
the current pivot equation is the kth equation and all the equations below it are still to be transformed.
Let the ith row be a typical row below the pivot equation that is to be transformed. We obtain this by
multiplying the pivot row by A = 4,/4,, and subtracting it from the i-th row. Then

4, < A4; -\, j=kk+1,...,n ..(4.3)
b, < b —M\b,
In order to transform the entire coefficient matrix to upper triangular form, k and i in Eqgs. (4.3) and (4.4)
should have the ranges k=1, 2, ..., n—1 (choose the pivot row), i=k + 1, k + 2, ..., n (selects the row to

be transformed).
The augmented coefficient matrix after Gauss elimination has the form

—An Ay Az o Ay || b
0 4y Ay - Ay || by
[4/b]=] O 0 Ay - 4, || b
L0 0 0 - 4,][b]
The last equation, 4,, x, = b,, is solved first, giving
x,=b,/4,,
Now conducting the back substitution, we have the solution as
> 1
e=|bem X Ay x| k=n—1,n-2 .. (44
j=kH k

4.4 LU DECOMPOSITION METHODS

Any square matrix 4 can be written as a product of a lower triangular matrix L and an upper triangular matrix
U.

A=LU

Numerical Methods 203

The process of computing L and U for a given A4 is known as LU decomposition or LU factorization.
The given equations can be rewritten as LUx = b and using the notation Ux = y, then
Ly=5b
which can be solved for y by forward substitution.
Hence, Ux = y which gives x by the back substitution process.

4.5 CHOLESKI’'S DECOMPOSITION

Choleski’s decomposition 4 = LL” requires that 4 to be symmetric. The decomposition process involves
taking square roots of certain combinations of the elements of 4.

A typical element in the lower triangular portion of LLT is of the form,

J

T . .

(LL)ij =LyLy+LpLy+-+LLy=Y Ll i2)
: k=1

Equating this term to the corresponding element of 4 gives

J
A= Lyl i=j j+1,...n i=1,2..n .(45)
k=1

Taking the term containing L; outside the summation in Eq.(4.5), we obtain

-1
Ay =3 LyLy +1L,L,

ij /ani/]
1

If i =, then the solution is

J-1
_ 2 -
Llj_ A’]_ZLJI‘ j72737"‘7n
k=1

or a non-diagonal term, we get

J-1
LU:(AZJ_ZLII‘L]/‘J/LJJ j:2,3,,l’l—1 l:j+l,j+2,,l’l

k=1

4.6 GAUSS-SEIDEL METHOD

The equations Ax = b can be written in scalar form as

~.

bl
I

Zszb i:1,2,...,n
j=1

g i

Extracting the term containing x; from the summation sign gives

n
Aﬁx,+2A{-/-xj:b,— i=1,2,..,n
j=l

J#I

Solving for x;, we obtain

204 MATLAB: An Introduction with Applications

1 n
—| b =X 4x; | i=1,2,...n
A, =

11

X, =
i

Hence, the iterative scheme is

We start by choosing the starting vector x. The procedure for Gauss-Seidel algorithm is summarized here
with relaxation:

(a) conducting k iterations with ® = 1 (or k = 10). After the k™ iteration record Ax®,
(b) carryout additional p iterations (p > 1) and record Ax% *?) after the last iteration.

(¢) perform all subsequent iterations with ® = ®,,,, where

2

opt = T
1+\/1—(Ax(k+p)/Ax(k))

4.7 GAUSS-JORDAN METHOD

Let us consider a system of linear algebraic equations, in the matrix form

[A]{x} = {b}

where, for simplification, [A4] is of order 3 x 3. The augmented matrix is

opt>

®

@y ay ay b

ay ay a4y by (4.6)
a ay ayp b

The solution of equation (4.6) is

[11{x} = [4] ' {b}
where [/] is the identity matrix. The augmented matrix is
1 0 0 o
010 o,
0 0 1 o4

In the Gauss-Jordan method the augmented matrix (4.6) is converted to the augmented matrix (4.7) by a
series of operations similar to the Gaussian elimination method. In the Gaussian elimination method an
upper triangular matrix is derived while in the Gauss-Jordan method an identity matrix is derived.

(47

205

4.8 JACOBI METHOD

This is an iterative technique solving with an assumed solution vector and successive refinement by iteration.
The system of equations for consideration is

Numerical Methods

apx; tapx, *apx; ... tax, = b

Ay Xt ApXy T ayXy ...t ayx, = b,

agxy +apx, *apxy ...+ a,x, =b;

a,x, + apx, t a;sx;y ... +a,x,=Db, ..(4.8)

Rewriting the above equations

xp = (by — apxy — apxy — ... —ax,)ag,

Xy = (by — ayxy — Aysx3 — ... — ay,X,)an,

X; = (b — apx; — apXy oo QN = QX QXA

Xy = (bn — Ay Xy T QppXy .. ann—lxn—l)/ann (49)

This procedure is valid only if all the diagonal elements are non zero. The equations are to be rearranged
suitably to avoid the non zero elements in the main diagonal.

Substituting the values of xl.r any stage in the iterative process on the right hand side of equations

(4.9) gives the values to the next stage, i.e., x; I In other words, the scheme is given by the system of
equations (4.10) with a superscript 7 on the right side and a superscript » + 1 on the left hand side. Rewriting

the equations,

r+l _ r r r

x =0 —apx, —ayx = —ay,x,) 4
r+l _ r r r

X =0, —ayx —ayxy ——ay,x,)/ ay,

r+l _ r r r r r
X = (b —anx; — Xy — @y X~ G M X

)/ ay

+1
X = (b, — X —a,,xy —-- Ay Xy)/ ay, ..(4.10)

The sequence x°, x!, x2, ... generated by the equations of (4.10) gives a sequence which converges to the
solutions vector x which satisfies the set of equations given in Eq.(4.8), i.e., [A]{x} = {b}.

Equation (4.10) in the matrix form is as follows

= () + [Blix) L(411)

206 MATLAB: An Introduction with Applications

b
ap
b
an

where {I'} =

0 aplay ayn/ay - eay,lay
ayy/ ay 0 Ayl ay s,/ ay

and [B]=
agla; apla; 0 ayy/ay - aylay,

‘anl/ann e e e an,nil/ann e]

The system of equations given in Eq. (4.8) can be written in the form

{x} = {v} +[B]{x} .(4.12)
Now we can construct expressions for x(... x®_.. in terms of x©
! =) + Bl
(x}? = (v} + B}
= {v} + [BI({v} + [BK?)
= {v} + [BI({v} + [B]X")
) = (v} + [Blx}@
= {v} + [BI({v} + [B]{v} + [BIx")
= {v} + [Bl{v} + [BF{v} + [BI*X’
Generalizing
X0 = (v} + [Bl{v} + [BPP{v} + - + [BY ' {v} + [B]x©)
Finally
X = () + [B] + [BY + [BP -~ + [B]") {v} + [B]"x® -(4.13)

Here, we notice that ([[] + [B] + [B]*> + [B]® ... [B]""!) is a matrix geometric progression. It is possible to
obtain the sum of r terms of the above expressions. Let us denote
s, =[I1+ [B] + [B) + [B -+ [B]""
=(]- B[] - [BD!

Numerical Methods 207

provided ([/] — [B]) is non-singular. Here we see that as » — oo the limit of the sum exists if [B]"— 0, in this
case s, — s = ([I] - [B])".

Hence in Eq.(4.13) x” will converge to the vector {x} provided [B]" — 0 as r — oo. Then the vector {x}
can be written as

oh = (- [BT' v
This means that ([/] — [B]) {x} = (v) and hence {x} = [B]{x} + {v}. This is just the equation (4.12).

4.9 THE HOUSEHOLDER FACTORIZATION

This method transforms the matrix into an upper triangular form by making use of reflection matrices; we
have

[Py]"[A]
where

[Pyl" = [P,a]" ... [P)'TP,]"
The [S,,] is an upper triangular matrix. The matrices [P)]7, i = 1, ..., n — 1 are reflection matrices computed in
such a way that [P;]” reduce the subdiagonal elements in column i of the coefficient matrix.

Then we have

1 0
[E]T _ [1—1]
0 [£]
here [/,_,] is the identity matrix of size i — 1
and [F1=1-8{w} (w}";
where 0= +
{wit {w;}

Here [é] is a symmetric matrix and {w;} is a vector of size n — i + 1. The vector {w;} will be chosen as
explained later.
Because [P] is symmetric, [P,]” = [P].
Now solution of the equation [4]{x} = {b} can be obtained by the following equation
[4] = [P4IS,]
where {v} =[S,] {x}.
The vector {v} is obtained as {v}= [P,]7{b}.
To explain the transformation, as a first step let us compute the [P,],
ie., [4] = [P,]I4] (4.14)
and [A] = [a; ; A;]
where q, is the first column of [4]. Then, we have
[P\]=1—0{w}{w}"

208

MATLAB: An Introduction with Applications

Here we have the first element of the vector [P,][@,] to be non zero since the sub-diagonal elements of the
column 1 of matrix [A4] is required to be zero.
Now choose the vector {w,} such that it must fulfill the condition
(I = 0w} {w}Dlay] = £ la]], ¢ -(4.15)
where e, is a non-dimensional unit vector from Eq. (4.15).
[a)] = 0{w} =+ la|l|, e
where 0 is a constant and equal to e{w,}7{w,}.
Let us set 8 = 1.0, then we obtain
{w} = la,] +sign (ay)) lla)ll, e,
From equation (4.14) we can get
i =} 14]
hence, [4] = [4] = 6({wy} {vi}7)

The factorization is explained in the example.

4.10 SYMMETRIC MATRIX EIGENVALUE PROBLEMS

The standard matrix eigenvalue problem is

Ax =\ ...(4.16)
where 4 is a given n X n matrix. The objective here is to find the scalar A and the vector x.
Equation (4.16) can be rewritten as

(A-M)x=0
A non-trivial solution exists only if
|[4-M|=0 ~(4.17)

Expansion of Eq.(4.17) gives the polynomial equation called the characteristic equation.
a\' +a, " +rai+a,, =0

which has the roots A, i = 1, 2, ..., n, called the eigenvalues of the matrix A. The solutions of x; of (4 — A,I)
x = 0 are known as eigenvectors.

4.11 JACOBI METHOD

Applying the transformation x = Px* in Eq.(4.16) where P is a non-singular matrix, we can write

P APx* = AP~ Px*
or A* =)dx * ..(4.18)
where A* = P14P.

Matrices that have the same eigenvalues are deemed to be similar and the transformation between them is
called a similarity transformation. Diagonalizing A*, Eq.(4.18) can be written as

Numerical Methods 209
4= 0 - 0 x| [o
0 Ap-—A 0 |lx| [0
(4.19)
0 0 A -r||x | LO

Solving Eq.(4.19), we obtain
M=A4, A=Ay, A, =4,

1 0
* O * 1 *
xlz . x2: . xn:
0 0 1
or K =[v x o x]=1

Therefore, the eigenvector matrix of 4 is

X =Px*=PI=P
The transformation matrix P is the eigenvector matrix of 4 and the eigenvalues of 4 are the diagonal terms
of A*.

Jacobi Rotation Matrix:
Consider the special transformation in the plane rotation

X =Rx*
_ i ' -
1 0 0 000 OO
01 0 0 0 0 0 Ofk
00 ¢ 00 s 00O
where R=|0 0 0 1 0 0 O O
00 0 01 0O0O
00 —s 00 ¢c 0 Of/
00 0 0O0OTO
100 0 00 0 0 1]

R is called the Jacobi rotation matrix and R™' = RT.
Also A*=R'4R=R" AR

The matrix A* has the same eigenvalues as the original matrix A4 and it is also symmetric.

Jacobi Diagonalization:

The Jacobi diagonalization procedure uses only the upper half of the matrix and is summarized below:
(a) Obtain the largest absolute value off-diagonal element 4, in the upper half of A4.

(b) Compute ¢, ¢, c and s

210

MATLAB: An Introduction with Applications

o= Akk _AM
ZAM
1
t=—
20
1
C =
1+¢*
s=tc

s
(¢) Compute T from T=—

(d) Modify the elements liz ihe upper half of 4:
Ay = Ay —t Ay,
Ay = Ay —1 4y,
Ay =4 =0

A=Ay = Ay —s(A,+14,), izki#l
A=Ay = Ay +s(Ag —TA4,), itk izl
where I:L
1+c¢
(e) Update the matrix P
Py = By —s(Py +75)
) = By +s(By —By)

Repeat the procedure until the 4;, < €, where € is the error tolerance.

4.12 HOUSEHOLDER REDUCTION TO TRIDIAGONAL FORM

The computational procedure is carried out with i = 1, 2, ..., n — 2 as described below:
(@) Define 4’ as the (n — i) x (n — i) lower-right hand portion of 4

(b) Let x=[Ayy; Ay ; Ay]

o i

1

(c) Compute |x|. Let k = |x| if x; > 0 and k = —|x| if x; <0

d) Letu=[k+x xx..x,]

(e) Compute H =|ul’/2

(Y Compute V=A"u/H

(g) Compute g=u'"v/2H

(h) Compute w=V —gu

(i) Compute the transformation 4 <-4’ —w
U) Set Ai,i 1= Ai +1, i =—k

Tu —uTw

Numerical Methods 211

4.13 STURN SEQUENCE

Consider a symmetric tridiagonal matrix. Its characteristic polynomial can be computed with 3(n — 1)
multiplications as described below:

d-A ¢ 0 0

q d—-A ¢ 0

0 d; — A\ 0
B (0)=4-M)= P

0 0 G d,—\ 0

o 0 0 ¢, d,—r
A =1
B =d
B(A) = (d; =MP (M) = B, (ML), =23,
The polynomials Py(A), P,(A), ..., P,(A) form a sturn sequence. The number of sign changes in the sequence

Py(a), Py(a), ..., P,(a) is equal to the number of roots of P,(A) that are smaller than a. If a member P;(a) of
the sequence is zero, its sign is to be taken opposite to that of P, ;(a).

4.14 QR METHOD

In the preceding section, we have described the Jacob’s method which is a reliable method but it requires
a large computation time and is valid only for real symmetric matrices. The QR method on the other hand
is numerically extremely stable and is applicable to a general matrix. This method also provides a basis for
developing a general purpose procedure for determining the eigenvalues and eigenvectors.

The method utilizes the fundamental property that a real matrix can be written as

[4]=[0l[U]
where [Q] is orthogonal and [U] is upper triangular. This is contrary to the decomposition in the form [L][U]

where [L] is the unit lower matrix and [U] is the upper triangular matrix. The property can be proved as
follows.

As in Jacobi’s method we introduce here the rotations matrix and denote it by [R:(p, g, 0)] to indicate the
rows that contain the non-zero, off-diagonal elements. Note that [R] is orthogonal.

1

cos0 sin® P

[R(r.9.0)]=

—sin® cos0 q

212

MATLAB: An Introduction with Applications

If any vector {x} is multiplied by [R.(p, g, 0)] such that y = [R]{x}, then
Vp =X, + 1y x, =c0s0x, +sinBx,

and Yq = TpX p F X, = —s1n6xp + cosexq

i.e,y;=x;if i # p or q. Therefore it is necessary to select 6 such that y, or y, is equal to zero. It should also
be noted that if x, = x, = 0 then y, = y, = 0. If we write

[4] = (x"x..x7)

then [R(ps‘]’e)][A] = (y(l)y(Z)"'y(n))

An element in either pth row or gth row is reduced by a proper choice of 0. Thus, all the elements in the
first column except the first element can be made zero by suitable values of 0, and they remain zero even
after multiplying with [R]. Similarly for all other columns elements are made zero for the elements below the
diagonal elements by proper choice of 0 values. Thus, we obtain an upper triangular matrix by forming the
product

[u]=R(n.n-18,,)R(n,n-2.6,,,)..R(3.1,65,)R(2,1,6,,)[4]

- (Hl 11 R(i,j,eg))[A]

Jj=li=j+1
Since [R] is an orthogonal matrix, the products of [R] are also orthogonal. Hence, we have [U] = [S][4]
where [S] is orthogonal an d[U] is upper triangular. Since [S] is orthogonal, we have [4] = [S]"'[U] = [S]'[U].
If [0] = [S]", then [4] = [O][U].

We can construct a sequence of matrices [4,], [4,][4,]... where

[4]=[4]=[Q][4]. [Q][4c]=[Qeai][4]

for all values of k& = 1. That is, we start with [4,] = [4] and put it in the form [Q,][U,] to obtain [Q,] and [U]
and then obtain [4,] which is equal to the product of [U;][Q,] in reverse order. Repeating this procedure,
we can obtain any number of sequence.

[A] = [4p] =[QollU,] determines [Qy] and [U]

[4,] = [UollQo] determines [4]

= [OU] determines [Q,] and [U}]
[4,] = [U][O1] determines [4,]

= [0,][U,] determines [(,] and [U}]
(4] = [Up][Op] determines [4;]

= [OdIU determines [Qy] and [U}]

From the above sequence, we can show that the product Q,0,0,...0, converges as k — oo. Then [4,]
converges to an upper triangular matrix with the eigenvalues of [4] as its diagonal elements. This can be
proved as follows. We have

[Ak] = [Qk][Uk] = [Uk—l][Qk—1] ...(4.20)
[4i-1]= Qe][V] .(421)

Numerical Methods 213

From which
-1
Ui]=[0a] [41] .(422)
Substituting Eq. (4.22) in Eq.(4.20), we get

[Ak] = [Qk—l]_1 [Ak—l][Qk—l]

Hence [4,] is similar to [4,;]. This implies that [4,] is similar to [4,] = [4]. Therefore, it has the same
eigenvalues as [4]. Also

[Ak—l] = [Qk—2]71 [Ak—2][Qk—2]

Thus [Ak+1] = [ri [Qk—l]% [Qo]i1 [A][QO][Qll-'-[Qk] = [Pk]_1 [A][Pk]
where [A]=[2]la]-[a]

If k£ — oo[P,] exists and we denote it by [P].

Then tim 0, = Jim ({7] [R]) = (Jim 2 1" sim [2]) =[P [P)=11]
Here, we have two limiting conditions

L [4]= [Pk—l]_l [4][A1]

which means

. - -1 . 1l
tim [4.]= (tim (7)) fm [)) = 2T L4117
Therefore, the limit [4,] is similar to [4] and hence has the same eigenvalues as [A4].

2 [4c]=[0][U]

tatis fim[4]=(1im[o,])(1im[v,]
here we have

lim [0,] = [/]
which results in

]}E?O[Ak]:]}gll[Uk]

Since every [U,] is an upper triangular matrix, the limit of [4,] is also an upper triangular matrix.

The accuracy of this method mainly depends on the effectiveness of the algorithm used for decompositions
of [4,] into [Q,][U,]. The limit £ — oo can exist for large size problems.

214 MATLAB: An Introduction with Applications

4.15 EXAMPLE PROBLEMS AND SOLUTIONS

Example E4.1: Use Gaussian elimination scheme to solve the set of equations.
2x; +x, - 3x; =11
4x) —2xy + 3x3 =8
—2x; +2x, —x3=-6

Solution:

>>A=[21-3;4-23; -22-11;
>>b=[11;8; -6];

>> format long

>> [x,det] = gauss(A,Db)

X =
3
-1
-2
det = -22

function [x, det] = gauss (A, b)

% Solves Axx = b by Gauss elimination and finds det (a)
% USAGE: [x, det] =gauss (A, Db)

if size(b, 2) >1; b=Db’; end % b column vector

n = length (b) ;

fork=1:n-1 % Elimination
fori=k+1:n
ifA (i, k) ~=0

lambda = A(1i, k) /A(k, k) ;

A(i, k+1:n) =A(i, k+1:n) - lambda *A(k, k+1:n);
b(i) =b(i) - lambdax*b (k) ;

end

end

end

if nargout == 2; det = prod(diag(a)); end
fork=n: -1:1 % Back substitution

b(k) = (b(k) —A(k, k+1:n)*b(k+1:n))/Ak, k);
end

X =Db;

Numerical Methods 215

MATLAB Solution [Using built-in function]:

>>A=[21-3;4-23;-22-11;
>>B = [11; 8; -6];

>>X = inv (A) *xB

>>x = A\B

X =

-1

-2
>>xX = 1inv (A) *xB
X =

3.0000
-1.0000
-2.0000

Example E4.2: Using Gaussian elimination method, solve the system of linear equations:
2x; +x, +x3—x4 =10
x; + 5%, —5x3+6x, =25
—Tx;+3x, —Tx3—5x, =5
Xp—=5% +2x;+7x, =11
Solution:

EDU >> Run_pr_ E4.2
A=
2 1 1 -1
1 5 -5 &6
-7 3 -7 -5
1 -5 2 7
B =
10
25
5
11
X =
25.3587
-19.6143
-28.9058
-7.8027
det =
-223.0000
X =
25.3587
-19.6143
-28.9058
-7.8027

216 MATLAB: An Introduction with Applications

Run_pr E4.2.m
A=[211-1;15-56;-73-7-5;1-52171];
b=1[10;25;5;11];

[x, det] =gauss(A,Db)

x = A\b

gauss.m

function [x,det] = gauss(A,b)

% Solves Axx =Db

if size(b,2) >1; b=Db’; end

n = length (b) ;

fork=1:n-1

for i=k+1l:n

ifAa(i,k) ~=0

lambda = A(i,k) /A (k,k);

A(i,k+1:n) =A(i,k+1:n) - lambda*A (k,k+1:n) ;
b(i)=Db(i) - lambda*b (k) ;

end

end

end

if nargout == 2; det = prod(diag(a)); end
fork=n:-1:1

b(k) = (b(k) -A(k,k+1:n)*b(k+1:n))/A(k,k);
end

X =Db;

MATLAB Solution [Using built-in function]:

>>A=[211-1;15-56;-73-7-5;1-527];
>>B=[10;25;5;11];
>>x = A\B
X =
25.3587
-19.6143
-28.9058
-7.8027
>>x =1inv (A) *B
X =

25.3587

Numerical Methods 217
-19.6143
-28.9058
-7.8027
4 3 1
3 8 6 12
Example E4.3: Tridiagonalize the given matrix [4] = 2 6 3 by Householder’s method.
1 2

Solution:

The following program is used

$Input - A is an nxn symmetric matrix
A=[4321;38612;2683;1234];

$Output - T is a tridiagonal matrix

[n,n] =size(A);
fork=1:n-2
s=norm(A(k +1:n, k));
if (A(k+ 1, k)<0)
s =-8;
end
r = sqrt (2xs+ (A(k +1, k) +s8));
W(l:k) = zeros(1,k);
Wk+1) = (Ak+1,k) +8)/r;
Wk+2:n) =A(k+2:n, k)'/r;
V(1l:k) = zeros (1, k) ;
V(k+l:n) =A(k+1:n, k+1:n)+«xW(k+1:n)’;
c=W(k+1:n)+xV(k+1:n)’;
Q(1:k) = zeros (1, k) ;
Q(k+1:n) =V(k+1l:n) —cxW(k+1:n);
A(k+2:n, k) =zeros(n-k-1,1);
A(k,k+2:n) =zeros (1, n-k-1);
A(k +1, k) =-8;
Ak, k+1) =-s;
Ak+1:n,k+1:n) =A(k+1:n, k+1:n) —-2«W(k+1:n)"xQ0(k+1:n) -2+xQ0(k +
1:n)’«W(k+1:n);
end
T=A;
fprintf (‘Matrix in tridiagonal formis\n’) ;
disp(T)

218

MATLAB: An Introduction with Applications

Matrix in tridiagonal form is

4.0000 -3.7417 0 0
-3.7417 14.5714 2.6245 0

0 2.6245 2.6878 -0.7622

0 0 -0.7622 2.7407

Example E4.4: Use the QR factorization method with Householder transformation to calculate the eigen-
values and the corresponding eigenvectors of the matrix [K], where

5 4 1 0

Solution:

MATLAB Solution [Using built-in function]:
>>A=[5-410;-46 -41;1-46-4;01-45];
>> kmax = 200;

>> [eigs,A] = eig QR(A, kmax)

eigs =
13.0902
6.8541
1.9098
0.1459
A=
13.0902 0.0000 0.0000 -0.0000
-0.0000 6.8541 0.0000 0.0000
0.0000 -0.0000 1.9098 0.0000
0 0 -0.0000 0.1459

>>A=[5-410;-46-41;1-46-4;01-45];
>> [Q,d] =eig(A)

Q=
-0.3717 -0.6015 0.6015 -0.3717
-0.6015 -0.3717 -0.3717 0.6015
-0.6015 0.3717 -0.3717 -0.6015
-0.3717 0.6015 0.6015 0.3717
d =
0.1459 0 0
0 1.9098 0
0 0 6.8541 0
0 0 0 13.0902

Numerical Methods 219

function [eigs,A] = eig QR(A, kmax)

$Find eigenvalues by using QR factorization
if nargin<2, kmax = 200; end

for k = 1:kmax

[Q,R] =qgr(A); %A =QxR; R=Q’ *A=Q"-1xA
A=RxQ; 3A =Q"-1xAxQ

end

eigs =diag(d) ;

function [Q,R] = gr_my (A)

%0OR factorization

N =size(A,1); R=A; Q = eye (N) ;
fork=1:N-1

H = Householder (R (:,k), k) ;

R =HxR;
Q=QxH;
end

function H = Householder (x, k)

$Householder transform to zero out tail part starting from k+1
H=-eye(N) - 2xwxw’ ; $Householder matrix

N = length (%) ;

w = zeros (N, 1) ;

w(k) = (x(k) +9)/c; wk+1:N) =x(k+1:N)/c;

tmp = sum(x (k+1: N). *2);

c =sgrt ((x(k) +g) "2 + tmp) ;

g =sqgrt(x(k)*2 + tmp) ;

Example E4.5: Using Choleski’s method of solution, solve the following linear equations.
X tx, tx3=7
3x; +3x, +4x;, =23
2x; +x, T x3=10

Solution:
MATLAB Solution [Using built-in function]:

Choleski’s method:
>>A=[111;334;211];
>>B=[7;23;10];

>> [L,U] = 1u(a)

220 MATLAB: An Introduction with Applications

L =
0.3333 -0.0000 1.0000
1.0000
0.6667 1.0000
U =
3.0000 3.0000 4.0000
-1.0000 -1.6667
0 -0.3333
>> L*U
ans =
1.0000 1.0000 1.0000
3.0000 3.0000 4.0000
2.0000 1.0000 1.0000
>>d =L\B
d =
23.0000
-5.3333
-0.6667
>>x = U\d
X =
3.0000
2.0000
2.0000

Check with MATLAB [Using built-in function]:
>>A=[111;334;211];
>>B=[7;23;10];

>>x = A\B
x =
3.0000
2.0000
2.0000

>>x = 1nv (A) *B
X =
3.0000
2.0000
2.0000

Numerical Methods 221

Example E4.6: Solve the system of equations by Choleski’s factorization method.
12x; — 6x5 — 6x3 — 1.5x4 =1
—6x; +4x, +3x3 + 0.5x, =2
—6x; +3x, + 6x3 + 1.5x, =3
—1.5x; + 0.5x, + 1.5x; + x, = 4

Solution:

MATLAB Solution [Using built-in function]:

Choleski’s method:
>>A=[12-6-6-1.5;-6430.5; -6361.5; -1.50.51.51];
>>B=[1; 2; 3; 4];

>> [L,U] = 1u(d)

L =
1.0000 0
-0.5000 1.0000 0
-0.5000 0 1.0000 0
-0.1250 -0.2500 -0.2500 1.0000
U =
12.0000 -6.0000 -6.0000 -1.5000
0 1.0000 0 -0.2500
0 0 3.0000 0.7500
0 0 0 0.5625
>> L*U
ans =
12.0000 -6.0000 -6.0000 -1.5000
-6.0000 4.0000 3.0000 0.5000
-6.0000 3.0000 6.0000 1.5000
-1.5000 0.5000 1.5000 1.0000
>>d = L\B
1.0000
2.5000
3.5000
3.8750
>> x=U\d
X =
2.7778
4.2222
-0.5556

6.8889

222

MATLAB: An Introduction with Applications

MATLAB Solution [Using built-in function]:

>>A=[12-6-6-1.5; -6430.5; -6361.5;-1.50.51.511;
>>B=[1;2;3;4];
>>x = A\B
X =
2.7778
4.2222
-0.5556
6.8889
>>x = inv (A) *B
X =
2.7778
4.2222
-0.5556
6.8889

Example E4.7: Solve the set of equations given in Example E4.3. Use Jacobi method.
Solution:

>>A=[31-1;4-101;215]; >>b=[-234]";

>> [x,k] = jacobi(A,b,[000]’,1.e-10)

Jacobi iteration has converged in 38 iterations.

X =
-0.2462
-0.3026
0.9590

k =
38

function [x, k, diff] = jacobi (A,b, x0, tol, kmax)

% Jacobi iteration on the systemAx = b.

if nargin<3, x0 = zeros (size (b)) ;, end

if nargin<4, tol = 1e -10;, end

if nargin<5, kmax = 100;, end

if min(abs (diag(a)))<eps

error (‘Coefficient matrix has zero diagonal entries, iteration cannot be
performed.\r’)

end
[nm] =size(A);
xold = x0;

Numerical Methods

223

k=1;, diff = [];
while k< = kmax
xXnew = b;
fori=1:n
forj=1:n
if j~=1
xnew (i) = xnew (i) — A(i,]j) »xo0ld(j) ;
end
end
xnew (1) = xnew (i) /A(i,1);
end
diff (k) = norm(xnew-xo0ld, 2) ;
if diff (k)<tol
fprintf (‘Jacobi iteration has converged in %d iterations.\r’, k)
X = Xnew;
return
end
k =k+1;, xold = xnew;
end
fprintf (*Jacobi iteration failed to converge.\r’)

X = Xnew;

Example E4.8: Find the solution to the equations using Jacobi method with initial values [0 0 0 0].

42 0 0][x] [4

2.8 2 0ffx,| _|o
02 8 2f|x[o
00 2 4|[x] |0

Solution:
>>A=[4200;2820;0282;0024];
>>b=1[4;0;0;0];

>>x0=[0000]";

>> [x,k] = jacobi (A,b,x0,1.e -10)

Jacobi iteration has converged in 34 iterations.

1.1556
-0.3111
0.0889
-0.0444

224

MATLAB: An Introduction with Applications

34
function [x, k, diff] = jacobi(A,b,x0, tol, kmax)
% Jacobi iteration on the systemAx =Db.
if nargin<3, x0 = zeros(size (b)) ;, end
if nargin<4, tol = 1e - 10;, end
if nargin<5, kmax = 100;, end
if min(abs (diag(A)))<eps

error (‘Coefficient matrix has zero diagonal entries, iteration cannot be
performed.\r’)

end

[nm] =size(d);

xold = x0;

k=1;, diff = [];

while k< = kmax
xnew = b;

fori=1:n

forj=1:n
if j~=1
xnew (i) = xnew (i) - A(i,3j)*xo0ld(3) ;
end
end
xnew (i) = xnew (i) /A(1i,1);

end
diff (k) = norm(xnew - xold, 2) ;
if diff (k)<tol
fprintf (‘Jacobi iteration has converged in %d iterations.\r’, k)
X = XNew;
return
end
k =k+1;, xo0ld = xnew;
end
fprintf (‘Jacobi iteration failed to converge.\r')

X = XNnew;

Numerical Methods

225

Example E4.9: Find the solution to the equations using Gauss-Seidel method.

42 0 0][x] [4
2.8 2 0f|x,| Jo
02 8 2f|x[o
00 2 4|lx,| |0

Solution:

MATLAB Solution Using built-in function]:
>>A=[4200;2820;0282;0024];
>>B=1[4;0;0;0];

>> x = A\B

x =
1.1556
-0.3111
0.0889
-0.0444

>> x=1inv (A) *B
X =
1.1556
-0.3111
0.0889
-0.0444
>>A=[4200;2820;0282;00214];
>>b=1[4;0;0;0];
>>tol =1.0e-9;
>> format long;
>> xguess = [1-0.50.1-0.2];
>> [x,iter] = GAUSSD (A, b, xguess, tol)
X =
1.15555555568491 -0.31111111117579
iter =
16

function [Y,iter] = GAUSSD (A, r,yguess, tol)

% GAUSSD will iteratively solve Ay =r

n = length(r); Y=yguess; dy=ones(n,1l); iter=0;

while norm(dy) /norm(Y) > tol

fori=1:n

0.08888888892123

if abs(A(i,1))<100*eps;error (‘'zero pivot found’) ;end

dy (i) =r(i)/A(i,1);

-0.04444444446061

226 MATLAB: An Introduction with Applications

forj=1:n

dy (i) =dy (i) -A(i,J)*Y(3) /AL, 1);

end

Y(i) =Y (i) +dy(1i);

end

iter = iter + 1;

if iter>1000; error (‘not converging in 1000 steps’) ;end
end

Example E4.10: Solve the system of equations given by [4]{x} = {b} using Gauss-Seidel method. The
matrices [4] and {b} are given below.

4 2 00 4
(4] = 2 820 by = 0
0 2 8 2 0
0 0 2 4 14

Solution:

MATLAB Solution [Using built-in function]:
>>A=[4200;2820;0282;0024];

>>b=1[4;0;0;14];
>> x = A\Db
X =
1.0000
0
-1.0000
4.0000
>>x = inv (A) *b
X =
1.0000
-0.0000
-1.0000
4.0000

>>A=[4200;2820;0282;0024];
>>b=1[4;0;0;14];
>>xguess = [1-0.50.1-0.2];
>>tol =1.0e-9;
>> format long;
>> [x,iter] = GAUSSD(A,b,xguess, tol)
X =
1.00000000075670 —-0.00000000037835 —-0.99999999981083 3.99999999990541
iter =
17

Numerical Methods 227

function [Y,iter] = GAUSSD (A, r,yguess, tol)

% GAUSSD will iteratively solve Ay =r

n = length(r); Y =yguess; dy =ones(n,1l); iter =0;
while norm(dy) /norm(Y) > tol

fori=1:n

if abs(A(i,1))<100*eps;error ('zero pivot found’) ;end
dy (i) =r (i) /A(i,1);

forj=1:n

dy (i) =dy (i) -A(i,3)*Y(F)/A(i,1);

end

Y(i) =Y (i) +dy(i);

end

iter = iter + 1;

if iter>1000; error (‘not converging in 1000 steps’) ;end
end

Example E4.11: Solve the system of equations given below by Householder’s factorization method:

4 -1 0 O0||x 1

-1 4 -1 0]]x| |0

0 -1 4 —1|]lx[Jo

0 0 -1 4]|x 0
Solution:
>>A=[4-100;-14-10;0-14-1;00-14];
>>b=1[1;0;0;0];
>> householder (A)

ans =
4 1 0 0
-2 4 -1 0
0 2 4 1
0 0 1 4
>> [L,U] = 1u(d)
1.0000 0 0 0
-0.2500 1.0000 0
0 -0.2667 1.0000 0
0 0 -0.2679 1.0000
U=
4.0000 -1.0000 0 0
0 3.7500 -1.0000 0
0 0 3.7333 -1.0000

0 0 0 3.7321

228 MATLAB: An Introduction with Applications

>> LxU
ans =
4 -1 0 0
-1 4 -1 0
0 -1 4 -1
0 0 -1 4
>>A=[4-100;-14-10;0-14-1;00-141;
>>d =L\b
1.0000
0.2500
0.0667
0.0179
>>x = U\d
x =
0.2679
0.0718
0.0191
0.0048

MATLAB Solution [Using built-in function]:
>>A=[4-100;-14-10;0-14-1;00-14];

>>B=[1;0;0;0];
>>x = A\B
X =
0.2679
0.0718
0.0191
0.0048
>>x = 1nv (A) «B
X =
0.2679
0.0718
0.0191
0.0048

function A = householder (A)

% Householder reduction of A to tridiagonal form A = [c\d\c]
$Extract candd by d=diag(ad), c=diag(a,1)

$Usage: A = householder (A)

Numerical Methods 229

n=size(A,1);

fork=1:n-2
u=23A(k+l:n,k);

uMag = sqrt (dot (u,u)) ;

if u(l)<0;uMag = —uMag; end
u(l) =u(l)+uMag;
A(k+1l:n,k) =u;

dot (u,u)/2;
v=A(k+1l:n,k+1:n)*u/H;
dot (u,v)/ (2*H) ;

jas]
Il

g
vV = Vv-g*u;

A(k+1l:n,k+1:n) =A(k+1l:n,k+1:n)-v*u’'-u*v’;
A(k,k+1) = —uMag;

d =diag(d);

c =diag(a,1);

Example E4.12: Solve the system of equations given below by Householder’s factorization method:

4 2 1 1[x] [t0
210 2 1||x] |20
12 4 2|ln[30
12 4 8||x| [40

Solution:

>>A=1[4211;21021;1242;1248];

% Householder reduction of A to tridiagonal form A = [c\d\c]
% Extract c and by d =diag(A) andc =diag(a,1l)

>> householder (A)

ans =
4.0000 -2.4495 1.0000 1.0000
4.4495 12.4082 -1.8257 -2.6330
1.0000 2.6422 2.4400 0.3427
1.0000 -1.6330 2.3427 7.1517

>>b=[10;20;30;40];

>>A=[4211;21021;1242;12438];

>> [L,U] = 1u(d)

L =
1.0000 0 0 0
0.5000 1.0000 0 0
0.2500 0.1667 1.0000 0
0.2500 0.1667 1.0000 1.0000

230

MATLAB: An Introduction with Applications

U=
4.0000 2.0000 1.0000 1.0000
0 9.0000 1.5000 0.5000
0 0 3.5000 1.6667
0 0 0 6.0000
>> L*TU
ans =
4 2 1 1
2 10 2 1
1 4 2
1 4 8
>>d =L\b
10
15
25
10
>>x = U\d
X =
0.2381
0.5159
6.3492
1.6667

function A = householder ()

% Householder reduction of A to tridiagonal form A = [c\d\c]
% Extract candd by d =diag(aA), ¢ =diag(a,1)
% Usage: A = householder (4)

n=gize(A,1);

fork=1:n-2

u=A(k+l:n,k);

uMag = sqrt (dot (u,u)) ;

if u(l)<0;uMag = —uMag; end

u(l) =u(l)+uMag;

A(k+1l:n,k) =u;

H=dot(u,u)/2;

v=A(k+1l:n,k+1:n)*u/H;

g=dot (u,v)/(2xH) ;

V =vV-gxu;

A(k+l:n,k+1:n) =A(k+1:n,k+1:n)-v+u’' -uxv’;
A(k,k+1) = —uMag;

d =diag(d);

Numerical Methods 231

c =diag(a,1);
end

MATLAB Solution [Using built-in function]:
>>A=[4211;21021;1242;12438];
>>B=[10;20;30;40];

>>x = A\B

X =

.2381

.5159

.3492

.6667

>>x = inv (A) *B

R OO0 O O

X =
.2381
.5159
.3492
.6667

R OO0 O O

Example E4.13: Use the method of Gaussian elimination to solve the following system of linear equations:
Xitx,tx3—x,=2
4x,+ 3x, + x5+ x4=11
X —Xy—x3+2x,=0
2x+ X+ 2x3— 2x4=2
Solution:
Gaussian elimination method eliminates (makes zero) all coefficients below the main diagonal of the two-
dimensional array. It does so by adding multiples of some equations to others in a symmetric way. Elimination
makes the array of new coefficients have an upper triangular form since the lower triangular coefficients are
all zero. Upper triangular equations can be solved by back substitution. Back substitution first solves last
equation which has only one unknown x(N) = b(N)/A(N, N).
Thus, it is a two phase procedure.
(I) Forward elimination (Upper triangularization): First reduce the coefficients of first column of A
below main diagonal to zero using first row. Then do same for the second column using second
TOW.
(2) Back substitution: In this step, starting from the last equation, each of the unknowns is found.
Pitfalls of the method:
There are two pitfalls of Gauss elimination method:
Division by zero: It is possible that division by zero may occur during forward elimination steps.
Round-off error: Gauss Elimination Method is prone to round-off errors.

232

MATLAB: An Introduction with Applications

The following MATLAB code is written for this problem

This will perform Gaussian elmination

o°

o°

on the matrix that you pass to it.

o°

i.e., given A and b it can be used to find x,
Ax =D

o° o°

o°

A - matrix for the left hand side.

o°

b - vector for the right hand side

o°

This performs Gaussian elminiation to find x.
MATRIX DEFINITION
A=[111-1;4311;1-1-12;212-2];
b=1[2;11;0;2];

Perform Gaussian Elimination

o°

o\

for j =2:N,
fori=73j:N,
m=A(i,j-1)/A(j-1, j-1);
A(i,:) =A(i,:) —A(j-1,:)*m;
b(i) =b(i) —mxb(j-1);
end
end
disp (‘Upper triangular formof givenmatrix is=")
disp(Aa)
disp(‘b=")
disp (b)

% BACK-SUBSTITUTION
% Perform back substitution
x = zeros (N, 1) ;
x(N) =b(N) /A(N,N) ;
forj =N-1:-1:1,
x(3) = (b(3)-A(F,F+1:N) +xx(j+1:N)) /A(F,3);
end
disp(‘final solution is’) ;
disp(x) ;

Outputappearslike this:
N
=4

Numerical Methods 233

Upper triangular form of given matrix is=
1.0000 1.0000 1.0000 -1.0000
0 -1.0000 -3.0000 5.0000
0 0 4.0000 -7.0000
0 0 0 0.2500

1

final solution is
-1

2

5

4
Check with MATLAB built-in function:
>>A=[111-1;4311;1-1-12;212-21;
>>b=1[2;11;0;2];

>>x = A\b
X =
-1.0000
2.0000
5.0000
4.0000

Example E4.14: Solve the following system of equations using Choleski’s factorization.
Xt X+ x3—x,=2
X=Xy —x3+2x,=0
)+ 4dx, +x3+x,=11
20+ xy+ 2x3—2x,=2
Solution:
Choleski’s factorization is basically applicable to only symmetric positive definite matrices.
Here original matrix [A] is decomposed as follows:
1. Form [A] = L-L” where L is lower triangular matrix
2. Forward substitution to solve Ly = b for y
3. Back substitution to solve L7x = y for x
For non-symmetric matrix a LU decomposition scheme can be employed using MATLAB function ‘/u(A4)’.
Complete MATLAB program is given below to solve the problem.
A=[111-1;1-1-12;4411;212-2];
b=1[2;0;11;2];

234

MATLAB: An Introduction with Applications

[L,U] =1u(d);
% solution of y

y = L\b;
% final solution x
x =U\y;

fprintf (*Solution of the equations is\n'’) ;
disp (x)
Output is as follows:
Solution of the equations is

1.0000

2.0000

-1.0000
0.0000

Check with MATLAB built-in function:
>>A=[111-1;1-1-12;4411;212-2];
b=1[2;0;11;2];

>>x =A\b
X =
1.0000
2.0000
-1.0000
0.0000

Example E4.15: Using the Gauss-Seidel method, solve the system of equations given below:
x+2p+z=0
Ix+y—=2=0
x—y+4z=3

Solution:

The Gauss-Seidel method is a technique used to solve a linear system of equations. In solving equations

AX = b, first the matrix A is written as: 4 = D + L + U where the matrices D, L, and U represent the diagonal,
negative strictly lower triangular, and negative strictly upper triangular parts of the coefficient matrix 4.

Then the solution is given for every iteration counter k as:

XEED = (D + Ly ' (-U X® + b) Gauss-Seidel Method
Xkt D = D YL + Uy XD+ b) Jacobi Method
Disadvantages:

1. The matrix (D + L) is not always invertible. One must check that the values on the diagonal are non-
zero before starting the iteration because it can lead to unpredictable results.

Numerical Methods 235

2. The spectral radius of the matrix (D + L)' * U must have a modulus < 1 for the iteration to work
correctly. Think of the spectral radius (the largest value of the set of eigenvalue modules) as being the
greatest scalar factor that can be applied to a vector. If it is greater than 1, iteration on the corresponding
eigenvector will result in an infinite limit.

Complete MATLAB program for solving given system of equations is given below:
% The display consists of a table of x-values with iterates of x1, x2, ..., xn
% in each column.
A=1[121;31-1;1-14];b=1[0;0;3];
X0 = zeros (size (b)) ; % starting vector
tole =1le-6;kstop =30;% error tolerance and max. iterations
[n,n] =size(A);
P=tril(A) ;% lower triangular form
k=0;r=b-A*X0;
r0 = norm(r) ;er = norm(r) ;
X =X0;
[L,U] = 1u(P);
fprintf (‘iter#\tX (1) \t\tX(2)\n’);
while er>tole & k<kstop
fprintf (*$d\t%f\t%f\n’ ,k,X(1),X(2));
k=k+1;
dx = L\r;
dx = U\dx;
X = X+dx;
r =Db-AxX;
er = norm(r) /x0;
erp (k) = norm(r) /r0;
end
X
plot (erp, ‘-p’);
gridon;
xlabel (‘Iteration#’) ;
ylabel (‘normalized error’) ;

Output of the program is as follows:
Final solution is X =
1.0e + 024 *
-1.7510
5.5007
1.8129

236

MATLAB: An Introduction with Applications

x 10°

w

Normalized error
N

0'.‘.".‘.' S — S — W — N — S S
0 5 10 15 20 25 30
Iteration #

Fig. E4.15

Here the method fails due to reason (2) given above.

Check with MATLAB built-in function:
>>A=[121;31-1;1-14];b=1[0;0;3];

>>x = A\b
X =
0.3333
-0.4444
0.5556

Example E4.16: Using the Gauss-Seidel method, solve the system of equations given below:

dx-y+z=10
~x+4y-2z=-2
x=2y+4z=5

Solution:

MATLAB program for this problem is given below.
A=[4-11;-14-2;1-24]1;

b=1[10;-2;5];

X0 = zeros (size (b)) ; % starting vector

tole = le-6;kstop = 30;% error tolerance and max. iterations
[n,n] =size(A);

P=tril (A7) ;% lower triangular form

k=0;r =b-A*X0;

r0 = norm(r) ;er = norm(r) ;

Numerical Methods

237

X =X0;

[L,U] =1u(P);

fprintf (‘iter#\tX (1) \t\tX(2)\n');

while er>tole & k<kstop

fprintf (*$d\t%f\t%f\n’ ,k,X(1),X(2));
k =k+1;
dx = L\r;

dx = U\dx;

X = X+dx;

r = b-A*X;

er = norm(r) /x0;

erp (k) = norm(r) /r0;

end
X

plot (erp, ‘-p’);

gridon;

xlabel (‘Iteration #’);
ylabel (‘normalized error’) ;

Output of the program is as follows:
iter# X(1) X(2)

0

0 N AN kW~

0.000000
2.500000
2.359375
2.389160
2.403793
2.407893
2.408845
2.409044
2.409082

The final solution is

X =

2.4091
0.5682
0.9318

The variation of error in each cycle is shown in Fig. E4.16.

0.000000
0.125000
0.433594
0.535767
0.561245
0.566810
0.567927
0.568137
0.568174

238

MATLAB: An Introduction with Applications

0.14

0.12f

0.1

0.08

0.06

Normalized error

0.04

0.02

1 2 3 4 5 6 7 8 9

Iteration #
Fig. E4.16 MATLAB output

Check with MATLAB built-in function:
>>A=[4-11;-14-2;1-24];b=[10; -2;5];
>>x =A\b

X =
2.4091
0.5682
0.9318

Example E4.17: Use the Jacobi method to determine the eigenvalues and eigenvectors of the following
matrix

11 2 8
A= 2 2 -10
9 -10 5

Solution:

A solution is guaranteed for all real symmetric matrices when Jacobi’s method is used. This limitation is not
severe since many practical problems of applied mathematics and engineering involve symmetric matrices.
From a theoretical viewpoint, the method embodies techniques that are found in more sophisticated
algorithms. For instructive purposes, it is worthwhile to investigate the details of Jacobi’s method.

Start with the real symmetric matrix A. Then construct the sequence of orthogonal matrices R,, R, Rs,...,R, as
follows:

Dy =4
and D;= R/TD/-R/- forj=1.2,. .

239

Numerical Methods

It is possible to construct the sequence {R;} so that

im | = D =diag(A;, Ay)

joD; ™
In practice, we will stop when the off-diagonal elements are close to zero. Then we will have D,, = D.

The complete program is shown below:
A=1[1128;22-10;9-105];
$Ooutput - Vis the nxn matrix of eigenvectors
% - D is the diagonal nxn matrix of eigenvalues
D=2A4;
[n,n] =size(d);
V = eye(n) ;
% Calculate row p and column q of the off-diagonal element
% of greatest magnitude in A
[ml p] = max (abs (D-diag(diag(D)))) ;
[m2 g] = max(ml) ;
p=p(q);
i=1;
while (i<10)
% Zero out Dpg and Dgp
t =D(p,q)/(D(qg,q)-D(p,p));
c=1/sqgrt (£™2+1);
s =c*t;
R=[cs;-sc];
D([pgl,:) =R’*D([pqgl,:);
D(:,[pgl) =D(:, [pal)*R;
V(:,[pqal) =Vv(:, [pgl)*R;
[ml p] = max (abs (D-diag(diag(D)))) ;
[m2 g] = max(ml) ;

p=p(a);
i=1+1;
end

D =diag(diag (D))
fprintf (‘final eigenvalues are $£\t%£f\t%f\n’,D(1,1),D(2,2),D(3,3));

The output of the program is as follows:

D=
18.4278 0 0
0 -9.2213 0

0 0 8.7934

final eigenvalues are 18.427839 -9.221279 8.793440

240

MATLAB: An Introduction with Applications

Check with MATLAB built-in function:
>>A=[1128;22-10;9 -10 5] ;
> [Q,D] =eig(a)

Q=
0.3319 -0.6460 -0.6277
-0.6599 0.3380 -0.6966
-0.6741 -0.6845 0.3475
D=
-9.2213 0 0
0 18.4308 0
0 0 8.7905
4 3
. 3 4
Example E4.18: Transform the matrix 4 = 5 1
1 2

Also determine the transformation matrix.
Solution:

Suppose that 4 is a symmetric n X n matrix.
Start with 4,= 4

Construct the sequence P;, P,, ...

where A, has zeros below the subdlagonal in columns 1, 2, ...,

W A~ = N

B W O =

P,_, of Householder matrices, so that 4, =

into tridiagonal form using Householder reduction.

P A, P fork= vy =2,
k. Then 4, , isa symmetrlc tr1diagona1

matrix that is similar to 4. This process is called Householder’s method.

$Input - A is an nxn symmetric matrix
=[4321;3412;2143;1234];
$Output -T is a tridiagonal matrix

[n,n] =size(A);
fork=1:n-2

s =norm(A(k+l:n,k));

if (A(k+1,k)<0)

S =-8;

r = sqrt(2*s*(A(k+1,k)
zeros (1,k) ;
+1) = (A(k+1,k)

w(1l

W(k)y /xr;
W(k+2:n) :A(k+2:n,k
V(1

v (

c

"/r;
k) =

k+1l:n) =A(k+1l:n,k+1:n)

(k+1:n) "’ ;

zeros (1,k) ;

=W(k+1l:n)*V

+8));

*W(k+1:n) "’ ;

Numerical Methods 241

Q(1l:k) = zeros(1,k) ;

Q(k+1:n) =V(k+l:n)-c*W(k+1l:n);
A(k+2:n,k) = zeros(n-k-1,1) ;
A(k,k+2:n) = zeros(1,n-k-1) ;

A

A(k,k+1) = -s;
A(k+l:n,k+1:n) =A(k+1l:n,k+1:n)
-2*W(k+1:n)’'*Q(k+1:n)-2*Q(k+1l:n) ' *W(k+1l:n);
end
T=24A;
fprintf (‘Matrix in tridiagonal form is\n’) ;
disp(T) ;

The output of the program is given below:
Matrix in tridiagonal form is

4.0000 -3.7417 O 0
-3.7417 6.5714 2.7180 0

0 2.7180 3.0529 1.2403

0 0 1.2403 2.3757

Example E4.19: Use the Sturn sequence property to find the interval of the smallest eigenvalue of

2 -1 0 0

-1 2 2 0
A:

0o -2 2 -1

0o 0 -1 2

Solution: The sequence {f,(¢)} and {f;(b) can be used to determine the number of roots of f,(A), which are
contained in [a, b].

The sequence {fy, f},..., fin} forms a Sturn sequence of polynomials; and such sequences have special
properties. Given a point b, calculate

o), /1(D),.... [, (b)}
and observe the signs of these quantities. If some fj(M =0, then choose the sign of fj (M) to be opposite
to that of f;;(A). It can be shown that

f/-(k)= 0= f/-_l(k) #0

Having obtain a sequence of signs from flet s (A) denote the number of agreements of sign between
consecutive members of the sign sequence.

242

MATLAB: An Introduction with Applications

The MATLAB program for this presented below:
$Given the diagonals canddof A = [c\d\c] and the value of 1, this function returns

the sturn sequence P, (1) ,P;(1),P,(1),w....P (1) . Note that P, (1) = |4—A,|
A=[2-100;-12-20;0-22-1;00-12];
d=diag(a)’;

c=[-1-2-17;
lam = input (‘Enter guess value lambda\n’) ;
n =length(d) +1;
p =ones(n,1l);
p(2) =d(1)-1lam;
fori=2:n-1

p(i+1l) = (d(i)-lam)*p(i)-(c(i-1)"2)*pl(i-1);
end
fprintf (‘sturn sequence p (%$f) is\n’,lam) ;
disp (p) ;
% number of sign changes in the sturn sequencep is
number eigenvalues of matrix A that are smaller than
lam min
n =length(p) ;
oldsign=1;
num_eval =0;
fori=2:n

psign = sign(p(i));

if psign = 0 psign = -oldsign;

end

if psignxoldsign <0

num_eval = num_eval+l;

end

oldsign = psign;
end
fprintf (‘Number of eigenvalues less than lamda = $f are $d\n’, lam, num_eval) ;
Output of the program is as follows (in two runs)
>>Enter guess value lambda
0

sturn sequence p(0.000000) is

o B N B

Numerical Methods 243

Number of eigenvalues less than lamda = 0.000000 are 1
» sturn
Enter guess value lambda
-1
sturn sequence p(—1.000000) is
1
3
9
19
53
Number of eigenvalues less than lamda = — 1.000000 are 0

Hence, lowest eigen value lies between 0 and —1.

Example E4.20: Use Gaussian elimination scheme to solve the set of equations:
2x,+x,—3x3=11
4x,—2x,+ 3x3=128
=2x,+ 2x, — x;=—6
Solution:
Writing the equation in the form of [4] X = B and applying forward elimination and back-substitution, we obtain

2 1 =3 11
U=10 -4 9| and right hand side = | -14
0 0 275 -5

3

Finally, the solution from back substitution becomes X =| —1

-2

The complete MATLAB program is given below:
Ax =Db
A - matrix for the left hand side.
b - vector for the right hand side
This performs Gaussian elminiation to find x.
% MATRIX DEFINITION
A=1[21-3;4-23;-22-1];
b=1[11;8;-6];
N = max(size(A)) ;
% Perform Gaussian (FORWARD) elimination
for j = 2:N,
fori =3j:N,
m=A(i,j-1)/A(j-1,3-1);
A(i,:) =A(i,:) -A(j-1,:)*m;

o° 0% o° o

o

244 MATLAB: An Introduction with Applications

b(i) =b(i) —m*b(j-1);

end

disp (‘Upper triangular formof givenmatrix is =")

BACK-SUBSTITUTION
Perform back substitution
X = zeros (N, 1) ;
x(N) =b(N) /A(N,N) ;
for j=N-1:-1:1,
x(3) = (b(j)-A(J,J+1:N)*x(j+1:N))/A(F,J);
end

o° o

disp(‘final solution is’) ;disp(x) ;

Output is as follows:
The final solution is
3

-1

-2
Check with MATLAB built-in function:
>>A=[21-3;4-23;-22-11;
b=1[11;8;-6];

>>x = A\b
X =
3
-1
-2

Example E4.21: Solve the system of linear equations by Gaussian elimination method:
6x; + 3x, + 6x;=30
2x;+ 3x,+ 3x3=17
X+ 2x,+ 2x;=11
Solution:
Writing the equation in the form of [4]X=B and apply forward elimination and back-substitution

The complete MATLAB program and output are given below:

A -matrix for the left hand side.
b - vector for the right hand side.
This performs Gaussian elminiation to find x.

s MATRIX DEFINITION

o\

o° o

e

Numerical Methods 245

A=[636;233;122];
b=1[30;17;11];
N =max (size(A))

% Perform Gaussian Elimination

for j =2:N,
for i=3j:N,
m=A(i, j-1)/A(j-1, j-1);
A(i,:) =A(i,:) —A(j-1,:)*m;
b(i) =b(i) -m*xb(j-1);
end
end
disp (‘Upper triangular formof givenmatrix is =")
disp(A)
disp(‘b=")
disp (b)

BACK-SUBSTITUTION
Perform back substitution
x = zeros (N, 1) ;
x(N) =b(N)/A(N,N) ;
forj=N-1:-1:1,
X(3) = (b(J)-A(J, F+1:N)+x(j+1:N))/A(F,F);
end
disp(‘*final solutionis’);
disp(x) ;
disp(‘matlab solution is’) ;
x = inv (A) «b

OUTPUT is given below:

N=
3
Upper triangular form of given matrix is =
6.0000 3.0000 6.0000
0 2.0000 1.0000
0 0 0.2500
b=
30.0000
7.0000

0.7500

246 MATLAB: An Introduction with Applications

The final solution is
1

2

3
MATLAB solution is
X =

2

Check with MATLAB built-in function:

>>A=[636;233;122];
b=1[30;17;111;

>>

>> x=A\b

Example E4.22: Using Choleski’s method, solve the following linear equations:
X tx,tx;=7
3x; 4 3x,+ 4x;=23
2x,+ x,+x3=10

Solution: The complete program and output are given below:
A=1[111;334;21171;
b=1[7;23;10];
[L,U] = 1u(d);
% solution of y
y = L\b;
$final solution x
x =U\y;
fprintf (*Solution of the equations is\n'’) ;
disp (x)
Solution of the equations is
3.0000
2.0000
2.0000

Numerical Methods

247

Check with MATLAB built-in function:
>>A=[111;334;211];
b=1[7;23;10];

>>x = A\b

X =
3.0000
2.0000
2.0000

Example E4.23: Solve the system of equations by Choleski’s factorization method:

12x, — 6x,— 6x3— 1.5x,= 1
—6x, + 4x, + 3x3+ 0.5x,=2
—6x, + 3x,+ 6x;+ 1.5x,=3
—1.5x,+ 0.5x, + 1.5x; + x,= 4
Solution:
Here the matrix [A4] is symmetric.
Program and the output are given below:

A=[12-6-6-1.5;-6430.5;-6361.5; -1.50.51.51];

b=1[1;2;3;41;
[L,U] =1u(d);
% solution of y

y = L\b;
$final solution x
x=U\y;
fprintf (*Solution of the equations is\n') ;
disp(x)
The solution of the equations is

2.7778

4.2222

—0.5556
6.8889

Check with MATLAB built-in function:

>>A=[12-6-6-1.5; -6430.5; -6361.5; -1.50.51.51];

b=1[1;2;3;4];

>>x =A\b
X =
2.7778
4.2222
-0.5556

6.8889

248

MATLAB: An Introduction with Applications

Example E4.24: Find the solution to the equations using Gauss-Seidel method

420 0] [x] [4
2.8 2 0| x| _Jo
028 2| |x| |0
002 4| |[x] |0

Solution:
The complete MATLAB program is given below with outputs of the program
A=[4200;2820;0282;0024];b=1[4;0;0;01;
X0 = zeros (size (b)) ; % starting vector
tole = 1le-6;kstop = 30;% error tolerance and max. iterations
[n,n] =size(A);
P=tril (A) ;% lower triangular form
k=0;r=b-A*X0;
r0 = norm(r) ;er = norm(r) ;
X =X0;
[L,U] = 1u(P);
fprintf (‘iter#\tX (1) \t\tX (2) \£\tX (3)\t\tX(4)\n");
while er>tole & k<kstop
fprintf (*$A\tSE\ESENELSENLSE\n’ , k,X (1) ,X(2),X(3),X(4));
k=k+1;
dx = L\r;
dx = U\dx;
X = X+dx;
r =b - A*X;
er = norm(r) /xr0;
erp (k) = norm(r) /r0;
end
X

The output is as follows:
X =
1.1556
- 03111
0.0889
—0.0444

Check with MATLAB built-in function:
>>A=[4200;2820;0282;0024];b=1[4;0;0;0];
>>x = A\b

Numerical Methods 249

1.1556
-0.3111
0.0889
-0.0444

Example E4.25: Solve the system of equations given by [4]{X}={b} using Gauss-Seidel method. The
matrices [4] and {b} are given below:

4 2 0 0 4
2 8 2 0
A]= and {b}=
[4] 02 8 o {b}
00 2 4 14

Solution:
The following program and output are presented:
A=[4200;2820;0282;0024];b=1[4;0;0;141;
X0 = zeros (size (b)) ; % starting vector
tole =1le-6;kstop = 30;% error tolerance and max.iterations
[n,n] = size(R);
P=tril (A7) ;% lower triangular form
k=0;r=b-A*X0;
r0 = norm(r) ;er = norm(r) ;
X =X0;
[L,U] = 1u(P);
fprintf (‘iter#\tX (1) \t\tX (2)\t\tX (3)\t\tX(4)\n’) ;
while er>tole & k<kstop
fprintf (*%d\t%E\tSE\tSEN\ESE\n’ ,k,X(1),X(2),X(3),X(4));
k =k+1;
dx = L\r;
dx = U\dx;
X = X+dx;
r = b-A*X;
er = norm(r) /r0;
erp (k) = norm(r) /r0;
end
X

The output is as follows:
X =
1.0000
—0.0000
— 1.0000
4.0000

250 MATLAB: An Introduction with Applications

Check with MATLAB built-in function:
>>A=[4200;2820;0282;0024];b=1[4;0;0;14];

>>x = A\b
X =
1.0000
0
-1.0000
4.0000

Example E4.26: Use the Jacobi’s method to determine the eigenvalues and eigenvectors of matrix

4 -1 2
-1 3 3
[4]=
-2 3 1
Solution:

The complete computer program is given below:
A=1[4-1-2;-133;-231];

$Output - Vis the nxn matrix of eigenvectors
% - D is the diagonal nxn matrix of eigenvalues

D=2A4;
[n,n] =size(n);
V = eye(n) ;

$Calculate row p and column g of the off-diagonal element
$of greatest magnitude in A

[ml p] = max (abs (D-diag(diag(D)))) ;

[m2 g] = max(ml) ;

p=p(q);
i=1;
while (i<20)

%Zero out Dpg and Dgp

t=D(p,q)/(D(q,q)-D(p,p));
c=1/sqgrt(t”2+1);
s =cCc*t;
R=[cs;-sc];
D([pgl,:) =R'"*D([pgl,:);
D(:,[pqgl) =D(:, [pgl)*R;

V(:,[pqgl) =V(:,[pqgl)*R;
[ml p] = max(abs (D-diag(diag(D)))) ;
[m2 g] =max(ml) ;

p=p(q);
1i=1i+1;
end

D =diag(diag (D))
fprintf (‘Final eigenvalues are $£\t%f\t%f\n’,D(1,1),D(2,2),D(3,3));

Numerical Methods 251

The output is as follows:
D=

2.6916 0 0

0 6.6956 0

0 0 —-1.3872
The final eigenvalues are 2.691611, 6.695589 and —1.387200
Check with MATLAB built-in function:
>>A=[4-1-2;-133;-231];
>> [Q,D] = eig(A)
0=

0.2114 .7636 -0.6102

-0.5184 .6168 0.5923

0.8286 .1911 0.5262

D=
-1.3872 0 0
0 2.6916 0
0 0 6.6956
6 2 1 -1
. . . -2 4 2 . :
Example E4.27: Find the eigenvalues and eigenvectors of [A4] = | 2 4 with the Jacobi’s method.
-1 1 2 4

Solution:

The following MALTAB program is used for this:
A=[6-21-1;-24-21;1-24-2;-11-24];
$Ooutput - Vis the nxn matrix of eigenvectors
% - D is the diagonal nxn matrix of eigenvalues
D=2A4;

[n,n] =size(A);

V = eye(n) ;

%$Calculate row p and column g of the off-diagonal element

$of greatest magnitude in A
[ml p] = max (abs (D-diag(diag(D)))) ;
[m2 g] = max(ml) ;
p=p(q);
i=1;
while (1i<100)
%Zero out Dpqg and Dgp
t=D(p,q)/(D(g,q) -D(p,p));

252

MATLAB: An Introduction with Applications

c=1/sqgrt (£™2+1);

S =c*t;

R=[cs;-scl;

D([pgl,:) =R"*D([pql,:);
D(:,[pgl) =D(:, [pgl)*R;
V(:,[pqgl) =V(:,[pqgl)*R;

[ml p] = max (abs (D-diag(diag(D)))) ;
[m2 g] = max(ml) ;

p=pr(q);
i=1+1;
end

D =diag(diag (D))
fprintf (‘Eigenvectors are\n’)
disp (V)

The output is as follows:

D=

9.1025 0 0 0

0 15186 0 0

0 0 4.5880 0

0 0 0 2.7910
The eigenvectors are
V=

0.6043 0.1788 —-0.7250 —0.2778
—-0.5006 0.5421 -0.0252 -0.6744
0.4721 0.7046 0.4915 0.1976
—-0.4016 04215 —-0.4818 0.6550

Check with MATLAB built-in function:
>>A=[6-21-1;-24-21;1-24-2;-11-24];
>> [Q,D] =eig(A)

Q=
-0.1788 -0.2778 0.7250 -0.
-0.5421 -0.6744 0.0252 0.
-0.7046 0.1976 -0.4915 -0.
-0.4215 0.6550 0.4818 0.

D=

.5186
.7910
.5880

o o o B
o O N o
o B> O O
O O O O

6043
5006
4721
4016

.1025

Numerical Methods 253

2 3
8 5
Example E4.28: Transform the matrix [4]= 35 12
-1 1 9
reduction.
Solution:

The following program is used.
$Input - A is an nxn symmetric matrix
A=1[723-1;2851;35129;-1197];

$Output - T is a tridiagonal matrix
[n,n] =size(A);
fork=1:n-2

s =norm(A(k+1l:n,k)) ;
if (A(k+1,k)<0)
s=-8;
end
r= sqrt (2*s* (A(k+1,k)+s));

k) = zeros (1,k) ;

(1
(
(k+2:n,k) = zeros (n-k-1,1) ;
(k,k+2:n) = zeros (1,n-k-1) ;
(
A

W(1
W(k+l) = (A(k+1,k)+s)/r;
W(k+2:n) = A(k+2:n,k) "' /r;
V(1l:k) = zeros(1,k);
V(k+1 n) =A(k+l:n,k+1:n)*W(k+1:n)"’;
c= (k+1:n)*V(k+1:n) "
Q k) = zeros (1,k) ;
0 k+1 n) =V(k+l:n)-c*W(k+1l:n);
A
A
A(k+1,k) = -s;
k,k+1) = -s;
A(k+l:n,k+1:n) =A(k+1:n,k+1:n)
end
T=A;

fprintf (‘Matrix in tridiagonal formis\n’) ;

disp(T)

The output is as follows:
The matrix in tridiagonal form is

7.0000 -3.7417 0 0
-3.7417 10.6429 9.1309 0
0 9.1309 10.5942 4.7716

0 0 47716 5.7629

into tridiagonal form using Householder

-2xW(k+1:n)’'*Q(k+1:n)-2*Q(k+1:n)’'+*W(k+1:n);

254

REFERENCES

Abramowitz, M. and Stegun, 1., Handbook of Mathematical Functions, Dover Press, New York, 1964.
Akai, T.J., Applied Numerical Methods for Engineers, Wiley, New York, NY, 1993.

Al-Khafaji, A.W. and Tooley, J.R., Numerical Methods in Engineering Practice, Holt, Rinehart and Winston,
New York, 1986.

Allen, M. and Issaaccson, E., Numerical Analysis for Applied Science, Wiley, New York, 1998.

Ames, W.F., Numerical Methods for Partial Differential Equations, 3™ ed., Academic Press, New York,
1992.

Ascher,U., Mattheij, R. and Russell, R., Numerical Solution of Boundary Value Problems for Ordinary
Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1988.

Atkinson, K. and Han, W., Elementary Numerical Analysis, 3" ed, Wiley, New York, 2004.

Atkinson, K.E., An Introduction to Numerical Analysis, 2" ed., Wiley, New York, NY, 1993.

Atkinson, L.V. and Harley, P.J., Introduction to Numerical Methods with PASCAL, Addison-Wesley,
Reading, MA, 1984.

Atkinson, L.V., Harley, P.J. and Hudson, J.D., Numerical Methods with FORTRAN 77, Addison-Wesley,
Reading, MA, 1989.

Axelsson, K., Iterative Solution Methods, Cambridge University Press, Cambridge, UK, 1994.

Ayyub, B.M. and McCuen, R.H., Numerical Methods for Engineers, Prentice-Hall, Upper Saddle River, New
Jersey, NJ, 1996.

Baker, A.J., Finite Element Computational Fluid Mechanics, McGraw-Hill, New York, 1983.
Balagurusamy, E., Numerical Methods, Tata McGraw-Hill, New Delhi, India, 2002.

Bathe, K.J. and Wilson, E.L., Numerical Methods in Finite Element Analysis, Prentice-Hall, Englewood
Cliffs, NJ, 1976.

Bhat, R.B. and Chakraverty, S., Numerical Analysis in Engineering, Narosa Publishing House, New Delhi,
India, 2004.

Bhat, R.B. and Gouw, G .J., Numerical Methods in Engineering, Simon and Schuster Custom Publishing,
Needham Heights, MA, 1996.

Bjorck, A., Numerical Methods for Least Squares Problems, Society for Industrial and Applied Mathematics
(STAM), Philadelphia, PA, 1996.

Booth, A.D., Numerical Methods, Academic Press, New York, 1958.

Brice, C., Luther, H.A., and Wilkes, J.0., Applied Numerical Methods, New York, NY, 1969.

Buchanan, J.L. and Turner, P.R., Numerical Methods and Analysis, McGraw-Hill, New York, 1992.
Burden, R.L. and Faires, J.D., Numerical Analysis, 6™ ed., Brooks/Cole, Pacific Grove, 1997.

Carnahan, B., Luther, A. and Wilkes, J.O., Applied Numerical Methods, Wiley, New York, 1969.
Chapra, S.C. and Canale, R.P., Introduction to Computing for Engineers, 2" ed., McGraw-Hill,
New York, 1994.

Chapra, S.C., and Canale, R.P., Numerical Methods for Engineers with Personal Computers, McGraw-Hill,
New York, 1985.

Chapra, S.C., Applied Numerical Methods with MATLAB for Engineers and Scientists, McGraw-Hill,
New York, 2005.

MATLAB: An Introduction with Applications

Numerical Methods 255

Chapra, S.C., Numerical Methods for Engineers with Sofiware and Programming Applications, 4™ ed.,
McGraw-Hill, New York, NY, 2002.

Cheney, W. and Kincaid, D., Numerical Mathematics and Computing, 2" ed., Brooks/Cole, Monterey, CA,
1994.

Chui, C., An Introduction to Wavelets, Academic Press, Burlington, MA, 1992.

Consatantinides, A., Applied Numerical Methods with Personal Computers, McGraw-Hill, New York, 1987.

Conte, S.D. and DeBoor, C.W., Elementary Numerical Analysis: An Algorithm Approach, 2™ ed., McGraw-
Hill, New York, NY, 1972.

Dahlquist, G. and Bjorck, A., Numerical Methods, Prentice-Hall, Englewood Cliffs, NJ, 1974.

Davis, P. and Rabinowitz, P., Methods of Numerical Integration, Academic Press, 2" ed., New York, 1998.
Demmel, J.W., Applied Numerical Linear Algebra, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1997.

Dennis, J.E. and Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Non-linear
Equations, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.

Epperson, J.F., An Introduction to Numerical Methods and Analysis, Wiley, New York, NY, 2001.

Fadeev, D.K., and Fadeeva, V.N., Computational Methods of Linear Algebra, Freeman, San Francisco, 1963.

Fadeeva, V.N., (Trans. Curtis D. Benster), Computational Methods of Linear Algebra, Dover, New York,
1959.

Fatunla, S.O., Numerical Methods for Initial Value Problems in Ordinary Differential Equations, Academic
Press, San Diego, 1988.

Ferziger, J.H., Numerical Methods for Engineering Applications, 2™ ed., Wiley, New York, NY, 1998.
Forbear, C.E., Introduction to Numerical Analysis, Addison-Wesley, Reading, MA, 1969.

Forsythe, G .E. and Wasow, W.R., Finite-Difference Methods for Partial Differential Equations, Wiley,
New York, 1960.

Forsythe, G .E. Malcolm, M.A. and Moler, C.B., Computer Methods for Mathematical Computation, Prentice-
Hall, Englewood Cliffs, NJ, 1977.

Froberg, C.E., Introduction to Numerical Analysis, Addison-Wesley, Reading, MA, 1965.

Gautschi, W., Numerical Analysis: An Introduction, Birkhauser, Boston, MA, 1997.

Gear, C.W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood
Cliffs, NJ, 1971.

Gerald, C.F. and Wheatley, P.O., Applied Numerical Analysis, 5th ed., Addison-Wesley, Reading, MA, 1994.
Gladwell, J. and Wait, R., 4 Survey of Numerical Methods of Partial Differential Equations, Oxford
University Press, New York, 1979.

Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley,
Reading, MA, 1989.

Golub, G .H. and Van Loan, C.F., Matrix Computations, 3 ed., Johns Hopkins University Press, Baltimore,
MD, 1996.

Greenbaum, A., Iterative Methods for Solving Linear Systems, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1997.

Griffiths, D.V. and Smith, LM., Numerical Methods for Engineers, Oxford University Press, 1991.

Guest, P.G ., Numerical Methods of Curve Fitting, Cambridge University Press, New York, 1961.

256

MATLAB: An Introduction with Applications

Hager, W.W., Applied Numerical Algebra, Prentice-Hall, Upper Saddle River, NJ, 1998.

Hamming, R.W., Numerical Methods for Scientists and Engineers, 2" ed., McGraw-Hill, New York, 1973.
Henrici, P.H., Elements of Numerical Analysis, Wiley, New York, 1964.

Higham, N.J., Accuracy and Stability of Numerical Algorithms, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1996.

Hildebrand, F.B., Introduction to Numerical Analysis, 2™ ed., McGraw-Hill, New York, NY, 1974.
Hoffman, J., Numerical Methods for Engineers and Scientists, McGraw-Hill, New York, 1992.

Hornbeck, R.W., Numerical Methods, Quantum, New York, 1975.

Householder, A.S., Principles of Numerical Analysis, McGraw-Hill, New York, 1953.

Householder, A.S., The Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964.

Iserles, A., A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press,
New York, 1996.

Issaccson, E. and Keller, H.B. and Bishop, H., Analysis of Numerical Methods, Wiley, New York, 1966.
Jacobs, D. (ed.), The State of the Art in Numerical Analysis, Academic Press, London, 1977.

Jacques, L. and Colin, J., Numerical Analysis, Chapman and Hall, New York, 1987.

Jain, ML.K., Numerical Analysis for Scientists and Engineers, S.B.W. Publishers, New Delhi, India, 1971.
James, ML.L., Smith, G.M. and Wolford, J.C., Applied Numerical Methods for Digital Computations with
FORTRAN and CSMP, 3" ed., Harper & Row, New York, 1985.

Johnson, L.W., Riess, R.D., Numerical Analysis, 2" ed., Addison-Wesley, Reading, MA, 1982.
Johnston, R.L., Numerical Methods: A Software Approach, Wiley, New York, 1982.

Kahaneer, D., Moher, C. and Nash, S., Numerical Methods and Software, Prentice-Hall, Englewood Cliffs,
NJ, 1989.

Keller, H.B., Numerical Methods for Two-Point Boundary Value Problems, Wiley, New York, 1968.
Kelley, C.T., Iterative Methods of Optimization, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1999.

Kharab, A. and Guenther, R.B., An Introduction to Numerical Methods—A MATLAB Approach, CRC Press,
Boca Raton, FL, 2001.

Kincaid, D. and Cheney, W., Numerical Analysis: Mathematics of Scientific Computing, Brooks/Cole, Pacific
Grove, CA, 1996.

Kress, R., Numerical Analysis, Springer-Verlag, New York, 1998.

Krishnamurthy, E.V. and Sen, S.K., Numerical Algorithms, East-West Publishers, New Delhi, India, 1986.
Krommer, A. R. and Ueberhuber, C.W., Computational Integration, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1998.

Lambert, J.D., Numerical Methods for Ordinary Differential Equations—The Initial Value Problems, Wiley,
New York, NY, 1991.

Lapidus, L. and Pinder, G.F., Numerical Solution of Ordinary Differential Equations in Science and
Engineering, Wiley, New York, 1981.

Lapidus, L., and Seinfield, J.H., Numerical Solution of Partial Differential Equations, Academic Press,
New York, 1971.

Lastman, G.J. and Sinha, N.K., Microcomputer Based Numerical Methods for Science and Engineering,
Saunders College Publishing, New York, NY, 1989.

Numerical Methods 257

Levy, H. and Baggott, E.A., Numerical Solutions of Differential Equations, Dover, New York, 1950.
Maron, M.J., Numerical Analysis, A Practical Approach, Macmillan, New York, 1982.

Mathews, J.H., Numerical Methods for Mathematics, Science and Engineering, 2™ ed., Prentice-Hall of
India, New Delhi, India, 1994.

Milne, W.E., Numerical Solution of Differential Equations, Wiley, New York, 1953.

Moin, P., Fundamentals of Engineering Numerical Analysis, Cambridge University Press, New York, 2001.

Morton, K.W. and Mayers, D.F., Numerical Solution of Partial differential Equations: An Introduction,
Cambridge University Press, Cambridge, UK, 1994.

Myron, A. and Issacson, E.L., Numerical Analysis for Applied Science, Wiley, Hoboken, NJ, 1998.

Na, T.Y., Computational Methods in Engineering Boundary Value Problems, Academic Press, New York,
1979.

Nakamura, S., Computational Methods in Engineering and Science, Wiley, New York, NY, 1977.
Nielson, K.L., Methods in Numerical Analysis, Macmillan Company, New York, 1964.

Noble, B., Numerical Methods, Vol. 2, Oliver and Boyd, Edinburgh, 1964.

Nocedal, J. and Wright, S.J., Numerical Optimization, Springer-Verlag, New York, 1999.

Ortega, J.M., Numerical Analysis—A Second Course, Academic Press, New York, NY, 1972.

Powell, M., Approximation Theory and Methods, Cambridge University Press, Cambridge, UK, 1981.
Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P., Numerical Recipes: The Art of Scientific
Computing, 2™ ed., Cambridge University Press, New York, 1992.

Quarteroni, A., Sacco, R. and Saleri, F., Numerical Mathematics, Springer-Verlag, New York, 2000.
Ralston, A., and Rabinowitz, P., 4 First Course in Numerical Analysis, 2" ed., McGraw-Hill, New York,
1978.

Ralston, A. and Wilf, H.S., eds., Mathematical Methods for Digital Computers, Vol. 1 and 2, Wiley, New
York, 1967.

Rao, K.S., Numerical Methods for Scientists and Engineers, Prentice-Hall, New Delhi, India, 2001.

Rao, S.S., Applied Numerical Methods for Engineers and Scientists, Prentice-Hall, Upper Saddle River,
New Jersey, NJ, 2002.

Ratschek, H. and Rokne, J., Computer Methods for the Range of Functions, Ellis Horwood, Chichester,
1984.

Rice, J.R., Numerical Methods, Software and Analysis, McGraw-Hill, New York, 1983.

Sastry, S.S., Introductory Methods of Numerical Analysis, Prentice-Hall of India, New Delhi, India, 2001.
Scarborough, J.B., Numerical Mathematical Analysis, 6" ed., John Hopkins Press, Baltimore, MD, 1966.
Scheid, F., Schaum’s Outline of Theory and Problems in Numerical Analysis, 2" ed., Schaum’s Outline
Series, McGraw-Hill, New York, 1988.

Schiesser, W.E., Computational Mathematics in Engineering and Applied Science, CRC Press, Boca Raton,
FL, 1994.

Shampine, L.F., Numerical Solution of Ordinary Differential Equations, Chapman and Hall, New York,
1994,

Sharma, J.N., Numerical Methods for Engineers and Scientists, Narosa Publishing House, New Delhi, India,
2004.

258

MATLAB: An Introduction with Applications

Smith, G.D., Numerical Solution of Partial Differential Equations: Finite Difference Methods, 3" ed., Oxford
University Press, Oxford, 1985.

Smith, W.A., Elementary Numerical Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1986.

Snyder, M.A., Chebyshev Methods in Numerical Approximation, Prentice-Hall, Englewood Cliffs, NJ, 1966.
Stanton, R.G., Numerical Methods for Science and Engineering, Prentice-Hall of India, New Delhi, India,
1967.

Stark, P.A., Introduction to Numerical Methods, Macmillan, New York, 1970.

Stewart, G.W., Matrix Algorithms, Vol. 1, Basic Decompositions, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1998.

Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.

Stroud, A., and Secrets, D., Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, 1966.
Stroud, A.H., Numerical Quadrature and Solution of Ordinary Differential Equations, Springer-Verlag,
New York, 1974.

Taylor, J.R., An Introduction to Error Analysis, University Science Books, Mill Valley, CA, 1982.

Traub, J.F., lterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, NJ, 1964.

Trefethen, L.N. and Bau, D., Numerical Linear Algebra, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1997.

Tyrtyshnikov, E.E., A Brief Introduction to Numerical Analysis, Birkhauser, Boston, 1997.

Ueberhuber, C.W., Numerical Computation 1: Methods, Software, and Analysis, Springer-Verlag, New York,
1997.

Ueberhuber, C.W., Numerical Computation 2: Methods, Software, and Analysis, Springer-Verlag, New York,
1997.

Vemuri, V. and Karplus, W.J., Digital Computer Treatment of Partial Differential Equations, Prentice-
Hall, Englewood Cliffs, NJ, 1981.

Vichnevetsky, R., Computer Methods for Partial Differential Equations, Vol. 1: Elliptic Equations and
the Finite Element Method, Prentice-Hall, Englewood Cliffs, NJ, 1981.

Vichnevetsky, R., Computer Methods for Partial Differential Equations, Vol. 2: Initial Value Problems,
Prentice-Hall, Englewood Cliffs, NJ, 1982.

Wendroff, B., Theoretical Numerical Analysis, Academic Press, New York, 1966.

Wilkinson, J.H., Rounding Errors in Algebraic Processes, Dover, New York, 1994.

Yokowitz, S. and Szidarovsky, F., An Introduction to Numerical Computation, Macmillan, New York, 1986.
Yong, D.M. and Gregory, R.T., 4 Survey of Numerical Mathematics, Vol. 1 and 2, Addison-Wesley, Reading,
MA, 1972.

Young, D., lterative Solution for Large Linear Systems, Academic Press, New York, 1971.

Numerical Methods 259

PROBLEMS

P4.1:

P4.2:

P4.3:

P4.4:

P4.5:

P4.6:
P4.7:

P4.8:
P4.9:

Use the method of Gaussian elimination to solve the following system of linear equations:
X txytxy;—x,=2
4x, +4xy, +x3—x, =11
X —Xy—x3+2x,=0
2x, +xy+ 2x3 - 2x4 =2

Use Gaussian elimination method to solve the system of equations [4]{x} = {b} where

I 1 11 3

2 -1 30 3
A= , b=

0 2 03 1

-1 0 21 0

Solve the following set of equations by Gauss-Jordan method.
2x; +x, —3x;=11
4x, —2x, +3x;=8
—2x; + 2x) —x3;=—6

Use Gauss-Jordan method to solve the following set of equations.

5 -4 1 0 0 1

-4 6 -4 1 olf|" 2
X

1 -4 6 -4 1 ={3
X 3

0 1 -4 6 -4 2
Xy

0 0 1 -4 5 1

Solve the following system of equations using Choleski’s factorizations.
X txy+tx;—x,=2
X —X,—x3+2x,=0
4x; +4xy + x5+ x4 =11
2x; + Xy + 203 - 2x,=2

Use Choleski’s method of solution for Problem P4.2.

Use Jacobi iterative scheme to obtain the solutions of the following system of equations.
x+2y+z=0
3x+y—-z=0
x—-y+4z=3

Use Jacobi iterative scheme to obtain the solution for Problem P4.1.

Use Gauss-Seidel method to solve the following system of equations in Problem P4.7.

260 MATLAB: An Introduction with Applications

P4.10: Solve the system of equations in Problem P4.2 using Gauss-Seidel method.
P4.11: Solve the following set of equations in Problem P4.5 using Householder’s factorization method.

P4.12: Use the Householder reduction to transfer the following matrix 4 into tridiagonal form and solve the
set of equations Ax = b, where

7 2 3 -1 2

2 8 5 1 -3
A= b:

3 512 9 5

-1 1 9

1 2 8
[A]=|2 2 -10
9 -10 5

P4.14: Use Jacobi method to compute the eigenvalues and the corresponding eigenvectors of the following
matrix A:

[4]=

— N W A
N = W
W = N
AW N =

000

CHAPTER

OPTIMIZATION

5.1 INTRODUCTION

Optimization is minimizing or maximizing a function. The function F(x) is called the merit function or objective
function. The components of x are known as the design variables.

The minimum point must be bracketed before a minimization algorithm can be used. The bracketing
procedure consists of starting with an initial value of x, and moving downhill computing the functions at
X\, X5, X3, ... until the point x,, is reached where f(x) increases for the first time. The minimum point is now
bracketed in the interval (x, ,, x,). The increasing in step size follows as 4, , ; = ¢ h; where ¢ > 1.

Suppose the minimum of f(x) has been bracketed in the interval (a, b) of length /. To telescope the
interval, the function at x; = b — Rh and x, = a + Rh is evaluated. If f; > f;, then the minimum lies in (x;, b);
otherwise it is located in (a, x,).

Next, we evaluate the function at x, = @ + RA” and repeat the process. We noted that x, —x;, =2 Rh— h
and x;, —a =h"— RW or 2Rh — h = I’ — RK and substituting 4’ = Rh, we obtain R = 0.618033989. The number
of telescopings required to reduce /4 from |b — a| to an error tolerance € is given by

po(e/lb=al) _ L oeg7 i< .
InR b—a

5.2 CONJUGATE GRADIENT METHODS

The objective here is to minimize F(x), where the components of x are the » independent design variables.
Consider the quadratic function

F(x)=c=Y by, +%22Aijxixj
i i

1
= c—bTx+5xTAx (5.1

262

MATLAB: An Introduction with Applications

Differentiating Eq.(5.1) w.r.t. x; gives
oF
g = _bi + z Ai/.xj

i J

or in vector notation

VF =-b+ Ax (52)
where VF is the gradient of F.

The gradient along ¥ when the motion takes place along the line x = x, + su, where s is the distance moved
is given by

VF]| =—b+A(x0+su)=VF|x +sAu

Xo+su
If the change in the gradient s4u is perpendicular to a vector V, then
VT 4u=0 .(5.2A)

The directions of u and V are said to be mutually conjugate.

5.3 NEWTON’S METHOD

Newton’s method is a gradient method and can be conveniently used to optimize functions with several

parameters. Let the function to be optimized be U(X), where X is the vector of parameters x,, x,, ..., X

ne

The function U(X)can be expanded in the Taylor’s series about a pointx™as
- . NOU®R) :
UXx)=UX)+) ——(x; —x;
() =U(x") gf o, (= x;)

Newton’s method uses only two terms in the series. Expressing in concise form, the above series can be
written as

UE)=UE)+g @)F-%) (53)
where g(x") is the vector of first derivatives given by

UE) AUE) }T

g(X)=[o om

The minimum U(x") obtained by setting

U

—=0
ox;

In Eq.(5.3) which yields the set of equations
gxXN)+IEH)E-x)=0 (54)

Optimization 263

where J (x") is the Jacobian matrix of second derivatives given by

PUKR) PUR) I’UK)
— ox; oxox, 0x,0x,
JE)=, ., o

IUKX) IUKX)

o T

A set of linear algebraic equations in the unknown x;’s are given by Eq.(5.4). If X" is taken as X, , the kth

point in the step by step search for the minimum, then solution of Eq. (5.4) given (k + 1)st approximation.
Writing Eq.(5.4) in the form

2(x)=J (X)X —%,)=0 ~(3.3)
It is possible to obtain an iterative form for the solution as
Tt =% ~[T (@) 8)
It is not actually necessary to obtain the inverse of the matrix J| [x,] to solve for the new approximation

X, . It is possible to write Eq.(5.5) in the form
T(5)8; =~8(%)

where §, =X, — X

5.4 THE CONCEPT OF QUADRATIC CONVERGENCE

Conjugate Directions for a Quadratic Function
The gradient method is expressed as

Xpr1 = X — M8 (%) ..(5.6)
or in the form
& =M 8(%)
During each iteration A, is selected to minimize U(X,,,) in the gradient direction. A gradient search tends

to zig-zig quite badly a particularly for quadratic functions. If it is possible to establish the best direction
to take for a quadratic function, it would likely also be better for most other non-linear functions. This is
called quadratic convergence and the approach is rather surprisingly successful. Equation (5.6) has the
general form, in this case, given by

X = X + A, C(%,) 5.7)
where C(x,) defines the conjugate direction vector at each step. The general quadratic form is
U®x)= %fﬁﬂﬁ%ﬂd (5.8)

where 4 is a matrix and B is a vector.

264

MATLAB: An Introduction with Applications

It is required to determine a means of establishing conjugate directions for an optimization function of this

form and show that they give convergence to the minimum. For this we require 4 to be a positive-define
matrix, which means it must be such that all quadratic terms of Eq.(5.8) are positive. This is equivalent to

requiring Eq.(5.8) to be convex so that it has a minimum. 4 will also be symmetric since

’U e IU
Ox;0x v ox ;0 s

and consequently 4! is also symmetric. For convenience, let
EE) =8 gD =8 CF)=C,
Note that the gradient vector of the quadratic (5.8) is
g=Ax+B (5.9)

Equation (5.7) is iterated for successive steps from i to (n — 1), to obtain

n-1
A%, = B= A%, + B+ Y M AC, (5.10)
k=i
Using Eq.(5.9) this becomes

n—1
8, =&+ Z}"kACk
k=i
Finally, premultiplying by C”,
n—1
CLg,=CLg +Z;‘kCiT—1ACk .(5.11)
k=1
It can be demonstrated intuitively that (_?Z.T,lgl. is zero by the following reasoning. In the i — 1 step, E',._l is
followed to a minimum for U, with takes us to X, and therefore the gradient g, is normal to C,_,. Consequently,
5sz1<§[=0
This can be demonstrated more rigorously as follows. Consider A, ; as a variable that is being adjusted to

minimize U and bring the search to X;. Consequently,

dU dU dx, 0JU dx, oU dx,
T 5 toot .(5.12)
dh;y oxp dhi 0x, dA ox, d\,_,
Referring to Fig. 5.1, the search vector (_,’i_1 at the origin has components C, ; , ..., C, ; |, and the search

moves along vector A, ,C,_; from x, ; to x;. In general, then, for any value of A, ,,

Optimization 265
X =%+ A Gy
X
Coip————"""""=> d
1
- |
Cin i
Cij X
Fig. 5.1 The (i — 1)th search step
Taking the derivative with respect to A, ;, results in
dx dx_, =
=——+C._
A\ dh
Since X,_;is constant at this state in the search, we have
— dx
C; =
i—1 d;\’FI
Thus, Eq.(5.12) can be written for any value of A,_; as
dU —r _
—=C._
d7\-l’,1 i lg
Now at X, , dU/d\,;_; must be zero for a minimum U. Thus, we have
GLg=0
Consequently, Eq.(5.11) reduces to
n—1
CLg, =Y MCLAC L(5.13)
k=i
The conjugate vectors are defined as those satisfying
C/AC;=0 -(5.14)

For i #j. Since 4 must be a positive-define matrix as defined above, the summation term of Eq.(5.13) is zero
so that

ClLg,=0 (5.15)

The theory of n-dimensional vectors states that if we construct a set of n-vectors all orthogonal or conjugate
to each other, then any other vector can be written as a linear combination of these vectors. Therefore, no
other vector can be orthogonal to all of the original n-vectors other than the zero vector. Since Eq.(5.15) is
an expression of orthogonally of the nth gradient vector with all » conjugate vectors, then g, must be
zero, which is the condition for the minimum of the quadratic. Thus, the minimum of the quadratic can be
found in the » steps if the search directions are conjugate.

266 MATLAB: An Introduction with Applications

The conjugate directions in two dimensions are shown in Fig. 5.2. The first search direction is the
gradient vector, which is chosen arbitrarily. The second direction is conjugate to the first one. Several
methods have been proposed for generating the first search direction and these methods are applied to
non-quadratic functions also. It should be noted that Newton’s method would go to the minimum in one
step if the function to be minimized is quadratic.

X2

Conjugate vector

Gradient
vectors

X4

Fig. 5.2 Conjugate directions

5.5 POWELL’S METHOD

For an optimization problem involving » design variables, the basic algorithm is described below:
(a) select a point x; in the design space
(b) select the starting vectors V,i=1,2, ..., n
(¢) dowithi=1,2,...,n
minimize F(x) along the line thro x, ; in the direction of V.
assume the minimum point as x;
end do
d) Vyu < x—x,
minimize F(x) along the line thro x, in the direction of V, | ;
assume the minimum point as x,, , ;
if |x, 4 | — x| < € exit loop
dowithi=1,2,....n
Vi <« Vz +1
end do
end cycle

The minimum point of a quadratic surface is reached in n cycles.

Optimization 267

5.6 FLETCHER-REEVES METHOD

The algorithm is described below:

(a) select a starting point x,
(b) gy« — VF(xp)
(© Vo< g
(d) loopwithi=0,1,2,...
minimize F(x) along V}; x; , | is the minimum point assumed
gi+1 ¢ —VF(x; ;)
if |g, .| <€ or |F(x;, ;) — F(x,)| < € exit loop
re (g1 &g &)
Vie1r < &1t 1V;

end loop

The method will find the minimum of a quadratic function in # iterations. Also, V; and V., are mutually
conjugate. In other words,

viav,, =0 and g;°g., =0.

5.7 HOOKE AND JEEVES METHOD

Hooke and Jeeves method is a sequential technique each step of which consists of two kinds of moves,
the exploratory move and the pattern move.

General procedure:

xl
. . . . xZ . . .
1. Start with an arbitrarily chosen point X, =4 ." ¢, called the starting base point and prescribed step
xll
lengths Ax; in each of the coordinate directions u;, i =1, 2, ..., n. Set k= 1.

2. Compute f, = (X}). Set i = 1, Yy, = X, and start the exploratory move as stated in step 3.

3. The variable x; is perturbed about the current temporary base point Y, ; | to obtain the new temporary
base point as

’Yk,i—l +Axu, if /%= S (Yo +Axuy)

<f=fYe)
v - Yoo —Axu, if f7 = f(Y 0 — Ay,
o <f=fYe)

<f'= S (Yo + Axuy)
»Yk,i—l if f=f(Y,)< min(f™", /7)

268

MATLAB: An Introduction with Applications

This process is continued for i = 1, 2, ..., until x,, is perturbed to find Y ..
4. If the point Y, , remains same as X, reduce the step lengths Ax; (say, by a factor of 2), set i = 1 and
go to step 3. If Y, , is different from X,, obtain the new base point as
X1 = Y
and go to step 5.
5. With the help of the base points X, and X| , ;, establish a pattern direction S as
S=Xi+1 - X
and find a point Y, | , as
Yk+ 1,0 = Xk+ 1 + XS ...(5.16)

where A is the step-length, which can be taken as 1 for simplicity. Alternatively, we can solve a one-
dimensional minimization problem in the direction S and use the optimum step length A* in place of A
in Eq.(5.16).

6. Setk=k+1,[,=f(Yy), i =1, and repeat step 3. If at the end of step 3, f(Y,,) <AX,), we take the new
base point as X;,; =Y, , and go to step 5. On the other hand, if /' (Y, ,) = f (X)), set X, =Y}, reduce
the step lengths Ax,, set k = k + 1, and go to step 2.

7. The process is assumed to have converged whenever the step lengths fall below a small quantity €.
Thus, the process is terminated if

max(Ax;) <E€.

5.8 INTERIOR PENALTY FUNCTION METHOD

In the interior penalty function methods, a new function (¢ function) is constructed by augmenting a penalty
term to the objective function. The penalty term is chosen such that its value will be small at points away
from the constraint boundaries and will tend to infinity as the constraint boundaries are approached. Thus,
once the unconstrained minimization of ¢(X, r;) is started from any feasible point X, the subsequent points
generated will always lie within the feasible domain since the constraint boundaries act as barriers during
the minimization process. The ¢ function defined as

m 1
X,r)= f(X)- z _ -
HXr) =S X) = =18 X)

Since the above equation does not allow any constraint to be violated, it requires a feasible starting point

for the search toward the optimum point. The iteration procedure of this method can be summarized as

follows:

Iterative process:

1. Start with an initial feasible point X, satisfying all the constraints with strict inequality sign, that is,
g(X;) <0 forj=1,2,..., mand an initial value for r; > 0. Set k= 1.

2. Minimize ¢(X, r;) by using any of the unconstrained minimization methods and obtain the solution
X*,.

3. Test whether X*; is the optimum solution of the original problem. If X*, is found to be optimum, terminate
the process or else, go to the next step.

Optimization 269

Find the value of the next penalty parameter, 7, , |, as
P = CT
where ¢ < 1.
Set the new value of k = k + 1, take the new starting point as X; = X*,, and go to step 2.
All these aspects are discussed in the following paragraphs.

Starting Feasible Point X:

L.

Select an arbitrary point X, and evaluate the constraints g;(X) at the point X;. Since the point X is
arbitrary, it may not satisfy all the constraints with strict inequality sign. If 7 out of a total of m constraints
are violated, renumber the constraints such that the last » constraints will become the violated ones,
that is,

gX)<0,;=12,....,m—-r
gj(Xl)ZO, jEm—r+1l,m—-r+2,....m
Identify the constraint that is violated most at the point X, that is, obtain the integer £ such that
g(X) =max[g(X))] forj=m-r+l,m-r+2,...m
Formulate a new optimization problem as:
Find X which minimizes g,(X)

subject to
g/(X)SOa j:1,2,...,m7r
g(X) —giX)) <0, jEm—r+lm—r+2, .. k-1,k+1,...m

Solve the optimization problem formulated in step 3 by taking the point X as a feasible starting point
using the interior penalty function method. Note that this optimization method can be terminated
whenever the value of the objective function g,(X) drops below zero. The solution obtained X, will
satisfy at least one more constraint than did the original point X.

If all the constraints are not satisfied at the point X, set the new starting point as X, = X,,, and
renumber the constraints such that the last » constraints will be the unsatisfied ones (this value of r
will be different from the previous value), and go to step 2.

This procedure is repeated until all the constraints are satisfied and a point X, = X, is obtained for
which g(X;) <0,j=1,2, ..., m.

Initial Value of the Penalty Parameter (r):

Since the unconstrained minimization of ¢(X, 7;) is to be carried out for a decreasing sequence of r,, it
might appear that by choosing a very small value of 7|, we can avoid an excessive number of minimizations
of the function ¢. But from a computational point of view, it will be easier to minimize the unconstrained
function ¢(X, r;) if r, is large. A moderate value has to be choosen for the initial penalty parameter (r). In
practice, a value of r, that gives the value of ¢(X,, ;) approximately equal to 1.1 to 2.0 times the value of
f(X) has been found to be quite satisfactory in achieving quick convergence of the process. Hence, for
any initial feasible starting point X, the value of », can be taken as

S(X)

=0.1t0 1.0~
n=0le L0 XD 5.17)

270

MATLAB: An Introduction with Applications

Subsequent Values of the Penalty Parameter:
Once the initial value of 7, is chosen, the subsequent values of 7, is selected so that

Fent <1 (5.18)
The values of r, are chosen such that
Ty <cry (5.19)

where ¢ < 1. The value of ¢ can be taken as 0.1, 0.2 or 0.5.

Convergence Criteria:
The process will be terminated whenever the following conditions are satisfied.

The relative difference between the values of the objective function obtained at the end of any two
consecutive unconstrained minimizations falls below a small number ¢, that is,

| FX0- X))
oxy |

<e

1

The difference between the optimum points XZ and Xz_l becomes very small. This can be judged in several

ways. Some of them are given below:
(AX)| < &,
where AX = XZ— Xz_l, and (AX); is the ith component of the vector AX.
max|(AX), < e,
| AX = [(AX)} +(AX); +--+(AX),] <e,
It is advisable to normalize the constraints so that they vary between —1 and 0 as far as possible.

If the constraints are not normalized, the problem can still be solved effectively by defining different
penalty parameters for different constraints as

X7)= f(X)-r /
o(X, 1) = f(X) r%gj(x)

where Ry, R,, ..., R, are selected such that the contributions of different g;(X) to the ¢ function will be
approximately the same at the initial point X.

5.9 EXAMPLE PROBLEMS AND SOLUTIONS

Example ES5.1: Minimize the following function using Newton’s method.
S, p) =22 =X = 5%+ x0 — X,
Use initial guesses, x =0 and y = 0.
Solution:
>> fn=inline (*x (1) "2-x(1)*x(2) -5*x (1) +x(2) *2-x(2) ', ‘x’') ;
>> gn=inline (" [2*x (1) -x(2)-5 -x(1)+2*x(2)-1]",'x");

Optimization

271

>> x0=[0 0] ;TolX=1le-4;TolFun=1e-6;MaxIter=100;

>> [x0,g90, xx]=newtons (gn,x0,TolX,MaxIter)

x0 =

3.6667 2.3333
go =

1.0e-015 *

0 -0.4441
XX =

3.6667 2.3333
3.6667 2.3333

function g= jacob(f,x,h,varargin)
$Jacobian of f (x)

if nargin<3, h=.0001; end

N= length(x); h2= 2*h; $hl2=12*h;
x=x(:)."; I=eye(N);

for n=1:N
fl=feval (f,x+I
fo2=feval (f,x-I
fi=feval (f,x+I
fa=feval (f,x-I
f12=(f1-£2) /h2;

f12=(8* (f1-f2)-f3+f4) /h12;

(n,:)*h,varargin{:});
(n :)*h,varargin{ 1)
(n, :)*h2,varargin{:});
(n,:)*h2,varargin{:})

h

g(:,n)=£f12(:);
end
if sum(sum(isnan(g)))==0&rank (g) <N

format short e

fprintf (*At x=%12.6e, Jacobian singular with J="

disp(g); format short;
end

function [x,fx,xx]=newtons(f,x0,TolX,MaxlIter,varargin)
newtons.m to solve a set of nonlinear egs

x0=the initial guess of the solution
TolX=the upper limit of |x(k)-x(k-1) |
MaxIter=the maximum # of iteration

fx=f (x(last))
xx=the history of x

o o o° o° o° o° o o

Output: x=the point which the algorithm has reached

input:f=a lst-order vector ftn equivalent to a set of equations

272 MATLAB: An Introduction with Applications

h=1e-5; TolFun=eps; EPS=1le-6;

fx=feval (£,x0,varargin{:});

Nf=length (fx); Nx=length (x0) ;

if Nf~=Nx, error (‘Incompatible dimensions of f and x0!’); end
if nargin<4, MaxIter=100; end

if nargin<3, TolX=EPS; end

xx(1,:)=x0(:).";

$fx0= norm (£fx) ;

for k=1: MaxIter

J=jacob (f,xx(k,:) ,h,varargin{:});

if rank (J)<Nx

k=k-1; fprintf (‘Warning: Jacobian singular! with det (J)=%12.6e\n’,det (J)) ;
break;

else

dx= -J\fx(:); %-[dfdx] " -1*fx;

end

xx (k+1,:)=xx(k, :)+dx.’;

fx= feval (f,xx(k+1, :),varargin{:}); fxn=norm(fx) ;

% 1f fxn<fx0, break; end

send

if fxn<TolFun|norm(dx)<TolX, break; end

$fx0= fxn;

end

x= xx(k+1,:);

if k==MaxIter

fprintf (‘Do not depend on this, though the best in %d iterations\n’,6 MaxIter)
end

Example ES.2: Minimize the two-variable objective function
S x) = x% = 2x00 — 4y - x,
Use initial values: (0,0).

Solution:
>> fn=inline (' 10*x (1) "2-10*x (1) *x(2)+3*x(2) "2+2*x(1) ', ‘'x’) ;
>> gn=inline (' [20*x(1)-10*x(2)+2 -10*x(1l)+6*x(2)]"','x");

>> x0=[0 0] ;TolX=1le-4;TolFun=1le-6;MaxIter=50;
>> [x0,g0,xx]=newtons (gn,x0,TolX,MaxIter)
x0=
-0.6000 -1.0000
g0=

Optimization 273

XX

0 0
-0.6000 -1.0000
-0.6000 -1.0000

function g= jacob(f,x,h,varargin)
$Jacobian of f (x)

if nargin<3, h=.0001; end

N= length(x); h2= 2*h; $hl2=12*h;
x=x(:)."; I= eye(N);

for n=1:N

fl=feval (f,x+I(n, :)*h,varargin{:});
f2=feval (f,x-I(n,:)*h,varargin{:})
f3=feval (f,x+I(n, :)*h2,varargin{
fa=feval (f,x-I(n,:)*h2,varargin{
£f12=(f1-f2) /h2;

f12=(8* (£f1-£f2)-£f3+f4) /hl12;

7 -

I

:};;
:})

7 -

g(:,n)=£f12(:);
end
if sum(sum(isnan(g)))==0&rank (g) <N

format short e

fprintf (*At x=%12.6e, Jacobian singular with J=',x);
disp(g); format short;

end

function [x,fx,xx]= newtons(f,x0,TolX,MaxIter,varargin)

newtons.m to solve a set of nonlinear egs

input: £ = a 1st-order vector ftn equivalent to a set of equations
x0 = the initial guess of the solution

TolX = the upper limit of |x(k)-x(k-1) |

MaxIter= the maximum # of iteration

Output: x=the point which the algorithm has reached

fx=f (x(last))

xx=the history of x

h=1e-5; TolFun=eps; EPS=1le-6;

fx=feval (f,x0,varargin{:}) ;

Nf=length (fx); Nx=length (x0) ;

if Nf~=Nx, error (‘Incompatible dimensions of f and x0!’); end
if nargin<4, MaxIter=100; end

if nargin<3, TolX=EPS; end

xx(1,:)=x0(:).";

o o° o° o° o° o o° oP°

274

MATLAB: An Introduction with Applications

$fx0= norm (£fx) ;

for k=1: MaxIter

J=jacob (f,xx(k,:) ,h,varargin{:});

if rank (J)<Nx

k=k-1; fprintf (‘Warning: Jacobian singular! with det (J)=%12.6e\n’,det (J)) ;
break;

else

dx= -J\fx(:); %-[dfdx] " -1*fx;

end

xx (k+1,:)=xx(k, :)+dx.’;

fx= feval (f,xx(k+1, :),varargin{:}); fxn=norm(fx) ;

% 1f fxn<fx0, break; end

send

if fxn<TolFun|norm(dx)<TolX, break; end

$fx0= fxn;

end

x= xx(k+1,:);

if k==MaxIter

fprintf (‘Do not depend on this, though the best in %d iterations\n’, MaxIter)
end

Example ES.3: Fit a polynomial by quadratic approximation and determine the values of X at which F(X) is
minimum.

X F(X)
1 8
2 3
3 17
Solution:
X F(X)
1 8
2 3
3 17

Let F(X) = ay+ a,X + a,X*>. From the given data, we have
ayta ta, =8
ayt2a, +4a, =3
ayt3a; +9a, =17
solving above equations using MATLAB give
>>A=[111;12 4;1 3 9];
>> b=[8;3;17];

Optimization 275
>> x=A\b
X =
32.0000
-33.5000
9.5000
>> x=inv (A) *b
X =
32.0000
-33.5000
9.5000
a, = 32
a, = -33.5
a,=9.5
>> x=[1 2 3];y=[8 3 17]; a2alal=polyfit(x,y,2)
azalal =

9.50000000000001 —33.50000000000002 32.00000000000003
and the function is

F(X)=32-33.5X+9.5X?
For finding minimum of the function, we find the first derivative of the function

% =-33.5+19X = 0; for a minima or maxima

Thus, X=1.763

To check for minima or maxima, we find second derivative of the function dZF—(zX) =19>0; thusit’sa
minimum.

The minimum value of F(X) at X is
F(X=1.763) = 2.462

Example ES.4: Fit a polynomial by quadratic approximation and determine the values of X at which F(X) is

X F(X)
1 =7
2 5
3 14

Solution:

F(X)

LN | — [e
|
~

14

276

MATLAB: An Introduction with Applications

Let F(X) = ay+ a,X + a,X*>. From the given data, we have
ayta +a, =7
ayt2a, +4a, =5
ayt3a, +9a, =14
Solving above equations give

ay, =22
a, =165
a, =-1.5
>> x=[1 2 3];y=[-7 5 14] ;a2ala0=polyfit(x,vy,2)

a2alal =

—1.50000000000000 16.50000000000002 —22.00000000000003
and the function is

F(X)=-22+165X-1.5X2

For finding minimum of the function, we find the first derivative of the function % =165-3X=0;
for a minimum or maximum
thus, X = 5.5

d*F(X)

To check for minima or maxima, we find second derivative of the function =-3<0; thusit’sa

dx?
maximum.

Thus, for the given function there is no absolute minimum. The function attains its minimum values at =+ oo.

MATLAB Solution:

% Problem 3.2

clc

clear

disp(‘'Fit a Polynomial by Quadratic Aproximation’)
x1=1;

X2=2;

X3=3;

£f1=-7;

f2=5;

£f3=14;

fx1=[1 x1 (x1)1;
fx2=[1 x2 2*x2];
fx3=[1 x3 3*x3];
a=[fx1;fx2;fx3]

b=[f1 ;f2; £3]

poly values=inv(a) *b

Optimization

277

$solve for min

disp (' (derivative) d(f(x))/dx= -3*x+16.5")
disp ('Thus minimum is x=-16.5/3 ~ 5.5')
disp(‘Second derivative d2 (f (x))/d2x=-3<0"')
disp('Thus no absolute minimum’)

Example ES5.5: Use Powell’s method to find the minimum of the function

f=120(y —x2)2 + (1 —x)?
Start with (-1, 1).

Solution:

function y = fex3 17 (X)

y = 120% (X (2)-X(1)"2) "2+ (1-X (1)) *2;
>> global X FUNC

>> FUNC = @fex3 17;

>> X=[-1.0,1.0];

>> [xMin, fMin,numCycles] =powell

xMin =
1.0000
1.0000

fMin =
4.8369e-021

numCycles =

12

function [xMin,fMin,nCyc] = powell(h,tol)
Powell’s method

h=initial search increment=0.1
tol=error tolerance=1.0e-6
X=starting point

FUNC=function that returns f
xMin=minimum point
fMin=miminum value of £

o o o° o° o° o o° o

nCyc=number of cycles to convergence
global X FUNC V

if nargin <2; tol=1.0e-6; end

if nargin <1; h=0.1; end

if size(X,2)>1; X=X'; end

n = length (X) ;

df = zeros(n,1);

278

MATLAB: An Introduction with Applications

u = eye(n);

for j = 1:40 % 40 cycles

x01d = X;

fold = feval (FUNC, x014d) ;

for i = 1:n

V=u(l:n,i);

[a,b] = goldBracket (@fLine, 0.0,h) ;
[s,fMin] = goldSearch(@fLine, a,b) ;
df (1) = £0ld - fMin;

fold = fMin;

X =X+ s*V;

end

V = X - x01d;

[a,b] = goldBracket (@fLine, 0.0,h) ;
[s,fMin] = goldSearch(@fLine, a,b) ;
X =X+ s*V;

% convergence criterion

if sgrt (dot (X-x01d,X-x01d) /n) < tol
xMin = X; nCyc = j; return

end

iMax = 1; dfMax = df (1) ;

for i = 2:n

if df (i) > dfMax

iMax = i; dfMax = df (i) ;
end

end

for i = iMax:n-1
u(l:n,i) =u(l:n,i+1);
end

u(l:n,n) =V;

end

error (‘No converge'’)

function z = fLine(s)
global X FUNC V
z = feval (FUNC, X+s*V) ;

Example ES5.6: Use Powell’s method to find the minimum of the function

F(¥) = 9x{ +4x7 —8x;x, +3x,
Start with xo=[0 0]~

Optimization 279

Solution:

function y = fex3 18 (X)

v = 9*%X (1) *2+4*X(2) "2-8*X (1) *X (2) +3*X (1) ;
>> global X FUNC

>> FUNC = @fex3 18;

>> X=[-1.0,1.0];

>> [xMin, fMin, numCycles] =powell

xMin =
-0.3000
-0.3000

fMin =
-0.4500

numCycles =

2

function [xMin,fMin,nCyc]=powell(h,tol)
Powell’s method

h = initial search increment = 0.1
tol = error tolerance = 1.0e-6

X = starting point

FUNC = function that returns £

xMin = minimum point

fMin = miminum value of £

nCyc = number of cycles to convergence
global X FUNC V

if nargin < 2; tol = 1.0e-6; end

if nargin < 1; h =0.1; end

if size(X,2) > 1; X = X’'; end

n = length (X) ;

df = zeros(n,1);

o o o° o° o° o o° o

u = eye(n);

for j = 1:40 % 40 cycles

x01d = X;

fold = feval (FUNC, x014d) ;

for i = 1:n

V=u(l:n,i);

[a,b] = goldBracket (@fLine, 0.0,h) ;
[s,fMin] = goldSearch(@fLine, a,b) ;
df (i) = £0ld - fMin;

f0ld = fMin;

X =X+ s*V;

280

MATLAB: An Introduction with Applications

end

V = X - x01d;

[a,b] = goldBracket (@fLine, 0.0,h) ;
[s,fMin] = goldSearch(@fLine, a,b);
X =X+ s*V;

% convergence criterion

if sgrt (dot (X-x01d,X-x01d) /n) < tol
xMin = X; nCyc = j; return

end

iMax = 1; dfMax = df (1) ;

for 1 = 2:n

if df (i) > dfMax

iMax = i; dfMax = df (1) ;
end

end

for i = iMax:n-1
u(l:n,i) =u(l:n,i+1);
end

u(l:n,n) =V;

end

error (‘No converge'’)

function z = fLine(s)
global X FUNC V
z = feval (FUNC, X+s*V) ;

Example ES5.7: Use Fletcher-Reeves method to locate the minimum of function

F(x) = 10x7 +35 —10x,,x, +2x; -

Start with [0 0.05]".

Solution:

Global X FUNC DFUNC V

>> FUNC=@fex3 19;DFUNC=@dfex3 19;X=[0,0.5];
>> [xMin, fMin,nCyc]=fletcherReeves

xMin =
-0.6000
-1.0000
fMin =
-0.6000
nCyc =

3

Optimization 281

function [xMin,fMin,nCyc] = FletcherReeves(h,tol)
Fletcher-Reeves method

h = initial search increment = 0.1
tol = error tolerance = 1.0e-6

X = starting point

FUNC = handle of function that returns f
DFUNC = handle of function that returns grad(f)
xMin = minimum point

fMin = miminum value of £

nCyc = # of cycles to convergence
global X FUNC DFUNC V

if nargin < 2; tol = 1.0e-6; end

if nargin < 1; h = 0.1; end

if size(X,2) > 1; X = X’'; end

n = length (X) ;

g0 = -feval (DFUNC, X) ;

V = g0;

for i = 1:50

[a,b] = goldBracket (@fLine, 0.0,h) ;
[s,fMin] = goldSearch(@fLine,a,b) ;

X =X+ s*V;

gl = -feval (DFUNC, X) ;

if sgrt(dot(gl,gl)) <= tol

xMin = X; nCyc = i; return

end

gamma = dot ((gl - g0),gl) /dot (g0, g0) ;
V = gl + gamma*V;

g0 = gl;

end

error (‘Method did not converge’)
function z = fLine(s)

global X FUNC V

z = feval (FUNC, X+s*V) ;

o® o° o° o o° o° o° o° o

function [a,b] = goldBracket(func,x1,h)
Brackets the minimum point of f (x)
func = returns f (x)

x1l= starting value of x

h = initial step size

a, b =1limits on x

=1.618033989;

1 = feval (func,x1) ;

o° o° o° oP° oP°

Hh Q

282

MATLAB: An Introduction with Applications

x2 =x1 + h; £2 = feval (func, x2) ;

if £f2 > f1

h = -h;

x2 =x1 + h; £2 = feval (func, x2) ;
if £f2 > f1

a =x2; b=x1-h; return

end

end

% Search loop
for i = 1:100

h = c*h;

x3 = x2 + h; £3 = feval (func,x3) ;
if £3 > f2

a =x1; b =x3; return

end

x1l =x2; £f1 = £2; x2 = x3; f2 = £3;
end

error (‘Failed to find minimum’)

function [xMin,fMin] = goldSearch(func,a,b,tol)

Golden section search method

func = function that returns f (x)

a, b =1imits of the interval for the minimum
tol = error tol = 1.0e-6

fMin = min of f (x)

o° o° o° o° o° o°

xMin = x at min point

if nargin < 4; tol = 1.0e-6; end
nIter = ceil (-2.078087*1log(tol/abs (b-a))) ;
R =0.618033989;

C=1.0 -R;

x1 = R*a + C*Db;

x2 = C*a + R*Db;

f1 = feval (func,x1) ;

f2 = feval (func, x2) ;

for i =1:nlIter

if £1 > f2

a=x1; x1 =x2; f1 = £2;

x2 = C*a + R*Db;

f2 = feval (func,x2) ;

else

b =x2; x2 =x1; £f2 = £f1;

x1 = R*a + C*Db;

Optimization 283

f1 = feval (func,x1) ;

end

end

if f1 < £2; fMin = £1; xMin = x1;
else; fMin = £2; xXMin = x2;

end

Example ES5.8: Use Fletcher-Reeves method to find the minimum of function in Problem EN3.18.
Start with [0 0.05]™.

Solution:

Global X FUNC DFUNC V

X=1[0,0];

>> FUNC=@fex3 20;DFUNC=@dfex3 20;X=[0,0];
>> [xMin, fMin,nCyc]=FletcherReeves

xMin =
-0.3000
-0.3000
fMin =
-0.4500
nCyc =

function [xMin,fMin,nCyc] = FletcherReeves(h,tol)
Fletcher-Reeves method

h = initial search increment = 0.1

tol= error tolerance = 1.0e-6

X = starting point

FUNC = handle of function that returns f
DFUNC = handle of function that returns grad(f)
xMin = minimum point

fMin = miminum value of £

nCyc = # of cycles to convergence
global X FUNC DFUNC V

if nargin < 2; tol = 1.0e-6; end

if nargin < 1; h =0.1; end

if size(X,2) > 1; X = X'; end

n = length (X) ;

g0 = -feval (DFUNC, X) ;

V = g0;

for 1 = 1:50

o° o° o° o o° o° o° o° o

284 MATLAB: An Introduction with Applications

[a,b] = goldBracket (@fLine, 0.0,h) ;
[s,fMin] = goldSearch(@fLine, a,b) ;
X =X+ s*V;

gl = -feval (DFUNC, X) ;

if sgrt(dot(gl,gl)) <= tol

xMin = X; nCyc = i; return

end

gamma = dot ((gl - g0),gl) /dot (g0, g0) ;
V = gl + gamma*V;

g0 = gl;

end

error (‘Method did not converge’)
function z = fLine(s)

global X FUNC V

z = feval (FUNC, X+s*V) ;

function [a,b] = goldBracket(func,x1,h)
Brackets the minimum point of f (x)
func = returns f (x)

x1l= starting value of x

h = initial step size

a, b =1imits on x

o® o° o° o° oP°

c =1.618033989;

f1 = feval (func,x1) ;

x2 =x1 + h; £2 = feval (func, x2) ;
if f2 > f1

h = -h;

x2 =x1 + h; £2 = feval (func, x2) ;
if f2 > f1

a =x2; b=x1-h; return

end

end

% Search loop

for i = 1:100

h = c*h;

x3 = x2 + h; £3 = feval (func, x3) ;
if £3 > f2

a =x1; b =x3; return

end

x1l =x2; £f1 = £2; x2 = x3; f2 = £3;
end

error (‘Failed to find minimum’)

Optimization

285

function [xMin,fMin] = goldSearch(func,a,b,tol)

Golden section search method

func = function that returns f (x)

a, b =1imits of the interval for the minimum
tol = error tol = 1.0e-6

fMin = min of f (x)

o° o° o° o° o° o°

xMin = x at min point

if nargin < 4; tol = 1.0e-6; end
nlter = ceil (-2.078087*1log(tol/abs (b-a)));
R 0.618033989;

C=1.0-R;

x1 = R*a + C*Db;

x2 = C*a + R*Db;

f1 = feval (func,x1) ;

f2 = feval (func,x2) ;

for i =1:nlIter

if £1 > f2

a=x1; x1 =x2; f1 = £2;

x2 = C*a + R*Db;

f2 = feval (func,x2) ;

else

b =x2; x2 =x1; £f2 = £f1;

x1 = R*a + C*Db;

f1 = feval (func,x1) ;

end

end

if f1 < £2; fMin = £f1; xMin = x1;
else; fMin = £2; xMin = x2;

end

Example E5.9: Minimize the following function f (x) by the penalty function method:

f @) =0 +2)” 505 = 2] [(x — 1.5)* + 0.5(x, — 0.5)°]

-x
-x,
subject to 3x, —xx, +4x, —6|<
2x +x, =5

S O O o O

3x, —4x; —4x,

286 MATLAB: An Introduction with Applications

Solution:
>> % Penalty function method
>> clear, clf
>> f='£321p"’;
>> x0=[0.4 0.5];
>> TolX=1e-5;TolFun=1e-9;alphal0=1;
>> TolX=1le-5;
>> MaxIter=100;
>> [x0 Nelder, £0 Nelder]=opt Nelder (f,x0,TolX, TolFun,MaxIter) % Nelder
method
X0 Nelder =
1.4423 0.6540
f0_Nelder =
0.3176
>> [fc_Nelder, f0 Nelder,cO Nelder]=£f321p(x0 _Nelder) % Its results
fc_Nelder =
0.3176
f0_Nelder =
0.3176
c0_Nelder =
-1.4423
-0.6540
-0.0002
-1.4613
-0.0002

>> [x0_s,f0 s]l=fminsearch(f,x0) %MATLAB built-in fminsearch()
x0 s =

1.4421 0.6540
f0 s =

0.3178
>> [fc s,f0 s,c0 s]=£321p(x0_s) % its results
fc s =

0.3178
fo_s =

0.3178
c0_s =

-1.4421

-0.6540

-0.0009

-1.4618

-0.0001

Optimization

287

>> [x0_u,f0 _ul=fminunc(f,x0) % MATLAB built-in fminunc

Warning: Gradient must be provided for trust-region method;
using line-search method instead.

> In fminunc at 243

Maximum number of function evaluations exceeded;

increase options.MaxFunEvals

x0 u =

1.4311 0.6599
f0 u =

0.3637
>> [fc u,f0 u,c0 ul=£321p(x0_u) % its results
fc u =

0.3637
fo u =

0.3637
cO0 u =

-1.4311

-0.6599

-0.0114

-1.4778

-0.0880

function [fc,f,c]=f321p(x)
f=((x(1)+2) "2+5* (x(2)-2)"2)* ((x(1)-1.5)"2+0.5* (x(2)-0.5)"2);

c=[-x(1); -x(2); 3*x(1)-x(1)*x(2)+4*x(2)-6;2*x(1)+x(2)-5;
3*%x (1) -4*x(2)"2-4*x(2)]; % Constraint vector

v=[11111];e=[11111]";% Weighting coefficient vector

fe=f+v* ((c>0) .*exp(e.*c)); ¥ New objective function

function [xo,fo]=opt_Nelder(f,x0,TolX,TolFun,MaxIter)
N=length (x0) ;

if N==1 %$for 1-dimensional case

[xo, fol =opt quad(f,x0,TolX,TolFun); return

end

S= eye (N) ;

for i=1:N %repeat the procedure for each subplane
il=i+1; if i1>N, il1l=1; end

abc=[x0; x0+S(i,:); x0+S(il,:)]; %each directional subplane
fabc=[feval (f,abc(1,:)); feval(f,abc(2,:)); feval(f,abc(3,:))]1;

[x0, fo]l =Nelder0 (f, abc, fabc, TolX, TolFun,MaxIter) ;

if N<3, break; end %No repetition needed for a 2-dimensional case
end

x0=x0;

288

MATLAB: An Introduction with Applications

function [xo,fo]=opt_quad(f,x0,TolX,TolFun,MaxIter)

$search for the minimum of f (x) by quadratic approximation method
if length(x0)>2, x012=x0(1:3) ;

else

if length(x0)==2, a=x0(1); b=x0(2);

else a=x0-10; b=x0+10;

end

x012= [a (a+b) /2 bl;

end

f0l12= f (x012) ;

[xo, fo]l =opt quadoO (f,x012,£012, TolX, TolFun,MaxIter) ;

function [xo,fo]=opt_quadO0(f,x012,f012,TolX,TolFun,k)

x0= x012(1); x1= x012(2); x2= x012(3) ;

fo= £012(1); f£f1= £012(2); f£2= £012(3);

nd= [f0-f2 £f1-f0 f2-f1]* [x1*x1 x2*x2 x0*x0; x1 x2 xX0]"';
x3=nd(1)/2/nd(2); f3=feval (f,x3); %$Eq. (7.1-4)

if k<=0|abs (x3-x1)<TolX|abs (£3-f1) <TolFun

xo0=x3; fo=£3;

if k==0, fprintf (*Just the best in given # of iterations’), end
else
if x3<x1

if £3<fl, x012=[x0 x3 x1]; f£012= [f0 £3 £f1];

else x012=[x3 x1 x2]; f012= [f3 f1 f2];

end

else

if £3<=f1, x012=[x1 x3 x2]; £012= [f1 £3 £f2];
else x012=[x0 x1 x3]; f012= [f0 f1 £31];

end

end

[xo, fol =opt quadoO (f,x012,£012, TolX, TolFun, k-1) ;
end

Example E5.10: Minimize f(x) = x{ +x; —6x, —8x, +10

subject to 4x] +x3 <0

3%, +5x,<0
Using penalty function method.

Solution:

% Penalty function method
clear,clft

Optimization 289

f='£322p’;

x0=[0.4 0.5];

TolX=1le-5;TolFun=1e-9;alpha0=1;

TolX=1le-5; MaxIter=100;

[x0 Nelder, f0 Nelder]=opt Nelder (f,x0,TolX, TolFun,MaxIter) % Nelder method
[fc_Nelder,f0 Nelder,cO Nelder]=£322p(x0 Nelder) % Its results
[x0_s,f0_s]l=fminsearch(f,x0) $MATLAB built-in fminsearch()
[fc_s,f0 s,c0 _s]=£f322p(x0_s) % its results
[x0 u,f0 _ul=fminunc(f,x0) % MATLAB built-in fminunc
[fc_u,f0 u,cO0 ul=£322p(x0 u) % its results

>> [x0 Nelder, £0 Nelder]=opt Nelder (f,x0,TolX, TolFun,MaxIter) % Nelder
method
X0 _Nelder =
0.4412 -0.2647
f0 Nelder =
9.7353
>> [fc_Nelder, f0 Nelder,cO Nelder]=£f322p(x0 Nelder) % Its results
fc_Nelder =
9.7353
f0_Nelder =
9.7353
c0_Nelder =
-0.7085
-0.0000

>> [x0_s,f0 s]=fminsearch(f,x0) $MATLAB built-in fminsearch ()

x0_s =

0.4412 -0.2647
fo_s =

9.7353
>> [fc s,f0 s,c0 s]=£322p(x0_s) % its results
fc s =

9.7353
f0 s =

9.7353
cl0_s =

-0.7085

-0.0000

290

MATLAB: An Introduction with Applications

>> [x0 u,f0 ul=fminunc(f,x0) % MATLAB built-in fminunc
Warning: Gradient must be provided for trust-region method;
using line-search method instead.
> In fminunc at 243
Optimization terminated: relative infinity-norm of gradient less than
options.TolFun.

x0_u =

0.4867 -0.1888
f0 u =

10.5382
>> [fc u,f0 u,c0 ul=£322p(x0_u) % its results
fc u =

10.5382
f0 u =

8.8627
cO0 u =

-0.9119

0.5161

function [fc,f,c]=f322p(x)
f=(x(1)"2+x(2) "2-6*x(1)-8*x(2)+10) ;

A

c=[-4*x(1)"2+x(2)"2; 3*x(1)+5*x(2)]; % Constraint vector
v=[1 1];e=[11]1"';% Weighting coefficient vector
fe=f+v* ((c>0) .*exp(e.*c)); $ New objective function

function [xo,fo]=opt_quad(f,x0,TolX,TolFun,MaxIter)

$search for the minimum of f (x) by quadratic approximation method
if length(x0)>2, x012=x0(1:3) ;

else

if length(x0)==2, a=x0(1); b=x0(2);

else a=x0-10; b=x0+10;

end

x012= [a (a+b)/2 bl;

end

f0l12= £ (x012) ;

[xo, fo]l =opt _quadoO (f,x012,£012, TolX, TolFun,MaxIter) ;

function [xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,k)

x0= x012(1); x1= x012(2); x2= x012(3) ;

fo= £012(1); £1= £012(2); f£2= £012(3);

nd= [f0-f2 £1-f0 f2-f1]*[x1*x1 x2*x2 x0*x0; x1 x2 xX0]"';
x3=nd(1)/2/nd(2); f3=feval (f,x3); 78ikol

Optimization 291
if k<=0|abs (x3-x1)<TolX|abs (£3-f1) <TolFun
xo=x3; fo=£3;
if k==0, fprintf (*Just the best in given # of iterations’), end
else
if x3<x1

if £3<fl, x012=[x0 x3 x1]; f£012= [f0 £3 £f1];

else x012=[x3 x1 x2]; f012= [f3 f1 f2];

end

else

if £3<=f1, x012=[x1 x3 x2]; £012= [f1 £3 £f2];
else x012=[x0 x1 x3]; f012= [f0 f1 £31];

end

end

[xo, fol =opt quadoO (f,x012,£012, TolX, TolFun, k-1) ;
end

Example E5.11: Find the minimum point of the following objective function f(x) using quadratic approximation
method.

2
fl=2 =D
8
Solution:
>> clear,clf
>> £323=inline (' (x.*x-5).%2/8-1", ‘x');
>> a=0;b=3;TolX=1e-6;TolFun=1e-9;MaxIter=100;
>> [x0q, £0g]l =opt _quad(£323, [a,b], TolX, TolFun,MaxIter)
x0g =
2.2361
foqg =
-1.0000
>> % x0g= minimum point and f0g = its function value in above
>> [x0q, £0g]=fminbnd (£323,a,b) % MATLAB built-in function
x0g =
2.2361
foqg =
-1.0000

function [xo,fo]=opt_quad(f,x0,TolX,TolFun,MaxIter)

$search for the minimum of f (x) by quadratic approximation method
if length(x0)>2, x012=x0(1:3) ;

else

if length(x0)==2, a=x0(1); b=x0(2);

292

MATLAB: An Introduction with Applications

else a=x0-10; b=x0+10;

end

x012= [a (a+b) /2 bl;

end

f012= £ (x012) ;

[xo, fo]l =opt _quadoO (f,x012,£012, TolX, TolFun,MaxIter) ;

function [xo,fo]=opt_quad0(f,x012,f012,TolX,TolFun,k)

x0= x012(1); x1= x012(2); x2= x012(3) ;

fo= £012(1); f£f1= £012(2); f£2= £012(3);

nd= [f0-f2 f1-f0 f2-f1]* [x1*x1 x2*x2 x0*x0; x1 x2 xX0]"';
x3=nd(1)/2/nd(2); f3=feval (f,x3); %$Eqg. (7.1-4)

if k<=0|abs (x3-x1)<TolX|abs (£3-f1) <TolFun

xo0=x3; fo=£3;

if k==0, fprintf (*Just the best in given # of iterations’), end
else
if x3<x1

if £3<fl, x012=[x0 x3 x1]; f£012= [f0 £3 £f1];

else x012=[x3 x1 x2]; f012= [f3 f1 f2];

end

else

if £3<=f1, x012=[x1 x3 x2]; £012= [f1 £3 £f2];
else x012=[x0 x1 x3]; f012= [f0 f1 £31];

end

end

[xo, fol =opt quadoO (f,x012,£012, TolX, TolFun, k-1) ;
end

Example E5.12: Find the minimum point of the